甲硫氨酸限制通过TRIM47抑制核p65易位来减弱癌症细胞的迁移和侵袭。

IF 2.9 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biological Chemistry Pub Date : 2023-11-10 Print Date: 2024-04-25 DOI:10.1515/hsz-2023-0292
Lin Xin, Yi-Wu Yuan, Chen-Xi Liu, Jie Sheng, Qi Zhou, Zhi-Yang Liu, Zhen-Qi Yue, Fei Zeng
{"title":"甲硫氨酸限制通过TRIM47抑制核p65易位来减弱癌症细胞的迁移和侵袭。","authors":"Lin Xin, Yi-Wu Yuan, Chen-Xi Liu, Jie Sheng, Qi Zhou, Zhi-Yang Liu, Zhen-Qi Yue, Fei Zeng","doi":"10.1515/hsz-2023-0292","DOIUrl":null,"url":null,"abstract":"<p><p>The prevention and treatment of gastric cancer has been the focus and difficulty of medical research. We aimed to explore the mechanism of inhibiting migration and invasion of gastric cancer cells by methionine restriction (MR). The human gastric cancer cell lines AGS and MKN45 cultured with complete medium (CM) or medium without methionine were used for <i>in vitro</i> experiments. MKN45 cells were injected tail vein into BALB/c nude mice and then fed with normal diet or methionine diet for <i>in vivo</i> experiments. MR treatment decreased cell migration and invasion, increased E-cadherin expression, decreased N-cadherin and p-p65 expressions, and inhibited nuclear p65 translocation of AGS and MKN45 cells when compared with CM group. MR treatment increased IκBα protein expression and protein stability, and decreased IκBα protein ubiquitination level and TRIM47 expression. TRIM47 interacted with IκBα protein, and overexpression of TRIM47 reversed the regulatory effects of MR. TRIM47 promoted lung metastasis formation and partially attenuated the effect of MR on metastasis formation <i>in vivo</i> compared to normal diet group mice. MR reduces TRIM47 expression, leads to the degradation of IκBα, and then inhibits the translocation of nuclear p65 and the migration and invasion of gastric cancer cells.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methionine restriction attenuates the migration and invasion of gastric cancer cells by inhibiting nuclear p65 translocation through TRIM47.\",\"authors\":\"Lin Xin, Yi-Wu Yuan, Chen-Xi Liu, Jie Sheng, Qi Zhou, Zhi-Yang Liu, Zhen-Qi Yue, Fei Zeng\",\"doi\":\"10.1515/hsz-2023-0292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prevention and treatment of gastric cancer has been the focus and difficulty of medical research. We aimed to explore the mechanism of inhibiting migration and invasion of gastric cancer cells by methionine restriction (MR). The human gastric cancer cell lines AGS and MKN45 cultured with complete medium (CM) or medium without methionine were used for <i>in vitro</i> experiments. MKN45 cells were injected tail vein into BALB/c nude mice and then fed with normal diet or methionine diet for <i>in vivo</i> experiments. MR treatment decreased cell migration and invasion, increased E-cadherin expression, decreased N-cadherin and p-p65 expressions, and inhibited nuclear p65 translocation of AGS and MKN45 cells when compared with CM group. MR treatment increased IκBα protein expression and protein stability, and decreased IκBα protein ubiquitination level and TRIM47 expression. TRIM47 interacted with IκBα protein, and overexpression of TRIM47 reversed the regulatory effects of MR. TRIM47 promoted lung metastasis formation and partially attenuated the effect of MR on metastasis formation <i>in vivo</i> compared to normal diet group mice. MR reduces TRIM47 expression, leads to the degradation of IκBα, and then inhibits the translocation of nuclear p65 and the migration and invasion of gastric cancer cells.</p>\",\"PeriodicalId\":8885,\"journal\":{\"name\":\"Biological Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/hsz-2023-0292\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/25 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2023-0292","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/25 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌症的防治一直是医学研究的重点和难点。目的探讨甲硫氨酸限制性(MR)抑制癌症细胞迁移和侵袭的机制。使用完全培养基(CM)或不含甲硫氨酸的培养基培养的人癌症细胞系AGS和MKN45进行体外实验。将MKN45细胞尾静脉注射到BALB/c裸鼠中,然后用正常饮食或甲硫氨酸饮食进行体内实验。与CM组相比,MR处理降低了细胞迁移和侵袭,增加了E-钙粘蛋白的表达,降低了N-钙粘蛋白和p-p65的表达,并抑制了AGS和MKN45细胞的核p65易位。MR处理增加了IκBα蛋白的表达和蛋白稳定性,降低了IκBα蛋白的泛素化水平和TRIM47的表达。TRIM47与IκBα蛋白相互作用,与正常饮食组小鼠相比,TRIM47的过表达逆转了MR的调节作用。TRIM47在体内促进了肺转移形成,并部分减弱了MR对转移形成的影响。MR降低TRIM47的表达,导致IκBα降解,进而抑制核p65的易位和癌症细胞的迁移和侵袭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methionine restriction attenuates the migration and invasion of gastric cancer cells by inhibiting nuclear p65 translocation through TRIM47.

The prevention and treatment of gastric cancer has been the focus and difficulty of medical research. We aimed to explore the mechanism of inhibiting migration and invasion of gastric cancer cells by methionine restriction (MR). The human gastric cancer cell lines AGS and MKN45 cultured with complete medium (CM) or medium without methionine were used for in vitro experiments. MKN45 cells were injected tail vein into BALB/c nude mice and then fed with normal diet or methionine diet for in vivo experiments. MR treatment decreased cell migration and invasion, increased E-cadherin expression, decreased N-cadherin and p-p65 expressions, and inhibited nuclear p65 translocation of AGS and MKN45 cells when compared with CM group. MR treatment increased IκBα protein expression and protein stability, and decreased IκBα protein ubiquitination level and TRIM47 expression. TRIM47 interacted with IκBα protein, and overexpression of TRIM47 reversed the regulatory effects of MR. TRIM47 promoted lung metastasis formation and partially attenuated the effect of MR on metastasis formation in vivo compared to normal diet group mice. MR reduces TRIM47 expression, leads to the degradation of IκBα, and then inhibits the translocation of nuclear p65 and the migration and invasion of gastric cancer cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Chemistry
Biological Chemistry 生物-生化与分子生物学
CiteScore
7.20
自引率
0.00%
发文量
63
审稿时长
4-8 weeks
期刊介绍: Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.
期刊最新文献
Zinc and copper effect mechanical cell adhesion properties of the amyloid precursor protein. Highlight: young research groups in Germany - 5th edition. A platform for the early selection of non-competitive antibody-fragments from yeast surface display libraries. Implications of TRPM3 and TRPM8 for sensory neuron sensitisation. A tailored cytochrome P450 monooxygenase from Gordonia rubripertincta CWB2 for selective aliphatic monooxygenation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1