图表解码器:自动从图表图像生成文本和数字信息

Wenjing Dai, Meng Wang, Zhibin Niu, Jiawan Zhang
{"title":"图表解码器:自动从图表图像生成文本和数字信息","authors":"Wenjing Dai,&nbsp;Meng Wang,&nbsp;Zhibin Niu,&nbsp;Jiawan Zhang","doi":"10.1016/j.jvlc.2018.08.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>Charts are commonly used as a graphical representation for visualizing numerical data in digital documents. For many legacy charts or scientific charts, however, underlying data is not available, which hinders the process of redesigning more effective visualizations and further analysis of charts. In response, we present Chart Decoder, a system that implements decoding of visual features and recovers data from chart images. Chart Decoder takes a chart image as input and generates the textual and numeric information of that chart image as output through applying deep learning, computer vision and text recognition techniques. We train a deep learning based classifier to identify chart types of five categories (bar chart, pie chart, line chart, scatter plot and radar chart), which achieves a </span>classification accuracy<span> over 99%. We also complement a textual information extraction pipeline which detects text regions in a chart, recognizes text content and distinguishes their roles. For generating textual and graphical information, we implement automated data recovery from bar charts, one of the most popular chart types. To evaluate the effectiveness of our algorithms, we evaluate our system on two corpora: 1) bar charts collected from the web, 2) charts randomly made by a script. The results demonstrate that our system is able to recover data from bar charts with a high rate of accuracy.</span></p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"48 ","pages":"Pages 101-109"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.08.005","citationCount":"36","resultStr":"{\"title\":\"Chart decoder: Generating textual and numeric information from chart images automatically\",\"authors\":\"Wenjing Dai,&nbsp;Meng Wang,&nbsp;Zhibin Niu,&nbsp;Jiawan Zhang\",\"doi\":\"10.1016/j.jvlc.2018.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Charts are commonly used as a graphical representation for visualizing numerical data in digital documents. For many legacy charts or scientific charts, however, underlying data is not available, which hinders the process of redesigning more effective visualizations and further analysis of charts. In response, we present Chart Decoder, a system that implements decoding of visual features and recovers data from chart images. Chart Decoder takes a chart image as input and generates the textual and numeric information of that chart image as output through applying deep learning, computer vision and text recognition techniques. We train a deep learning based classifier to identify chart types of five categories (bar chart, pie chart, line chart, scatter plot and radar chart), which achieves a </span>classification accuracy<span> over 99%. We also complement a textual information extraction pipeline which detects text regions in a chart, recognizes text content and distinguishes their roles. For generating textual and graphical information, we implement automated data recovery from bar charts, one of the most popular chart types. To evaluate the effectiveness of our algorithms, we evaluate our system on two corpora: 1) bar charts collected from the web, 2) charts randomly made by a script. The results demonstrate that our system is able to recover data from bar charts with a high rate of accuracy.</span></p></div>\",\"PeriodicalId\":54754,\"journal\":{\"name\":\"Journal of Visual Languages and Computing\",\"volume\":\"48 \",\"pages\":\"Pages 101-109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.08.005\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Languages and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1045926X18301162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X18301162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 36

摘要

图表通常用作可视化数字文档中数字数据的图形表示。然而,对于许多传统图表或科学图表来说,基础数据不可用,这阻碍了重新设计更有效的可视化和进一步分析图表的过程。作为回应,我们提出了图表解码器,一个实现视觉特征解码并从图表图像中恢复数据的系统。图表解码器将图表图像作为输入,并通过应用深度学习、计算机视觉和文本识别技术生成该图表图像的文本和数字信息作为输出。我们训练了一个基于深度学习的分类器来识别五类图表类型(条形图、饼图、折线图、散点图和雷达图),分类准确率超过99%。我们还补充了文本信息提取管道,该管道检测图表中的文本区域,识别文本内容并区分它们的角色。为了生成文本和图形信息,我们从条形图(最流行的图表类型之一)中实现了自动数据恢复。为了评估我们算法的有效性,我们在两个语料库上评估了我们的系统:1)从网络上收集的条形图,2)脚本随机制作的图表。结果表明,我们的系统能够以高准确率从条形图中恢复数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chart decoder: Generating textual and numeric information from chart images automatically

Charts are commonly used as a graphical representation for visualizing numerical data in digital documents. For many legacy charts or scientific charts, however, underlying data is not available, which hinders the process of redesigning more effective visualizations and further analysis of charts. In response, we present Chart Decoder, a system that implements decoding of visual features and recovers data from chart images. Chart Decoder takes a chart image as input and generates the textual and numeric information of that chart image as output through applying deep learning, computer vision and text recognition techniques. We train a deep learning based classifier to identify chart types of five categories (bar chart, pie chart, line chart, scatter plot and radar chart), which achieves a classification accuracy over 99%. We also complement a textual information extraction pipeline which detects text regions in a chart, recognizes text content and distinguishes their roles. For generating textual and graphical information, we implement automated data recovery from bar charts, one of the most popular chart types. To evaluate the effectiveness of our algorithms, we evaluate our system on two corpora: 1) bar charts collected from the web, 2) charts randomly made by a script. The results demonstrate that our system is able to recover data from bar charts with a high rate of accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Languages and Computing
Journal of Visual Languages and Computing 工程技术-计算机:软件工程
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
26.8 weeks
期刊介绍: The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.
期刊最新文献
Editorial Board Error recovery in parsing expression grammars through labeled failures and its implementation based on a parsing machine Visual augmentation of source code editors: A systematic mapping study Optimizing type-specific instrumentation on the JVM with reflective supertype information Qualitative representation of spatio-temporal knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1