Jiazhi Xia , Le Gao , Kezhi Kong , Ying Zhao , Yi Chen , Xiaoyan Kui , Yixiong Liang
{"title":"探索线性投影,以揭示多维数据集子集中的聚类、异常值和趋势","authors":"Jiazhi Xia , Le Gao , Kezhi Kong , Ying Zhao , Yi Chen , Xiaoyan Kui , Yixiong Liang","doi":"10.1016/j.jvlc.2018.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Identifying patterns in 2D linear projections is important in understanding multi-dimensional datasets. However, local patterns, which are composed of partial data points, are usually obscured by noises and missed in traditional quality measure approaches that measure the whole dataset. In this paper, we propose an interactive interface to explore 2D linear projections with visual patterns on subsets. First, we propose a voting-based algorithm to recommend optimal projection, in which the identified pattern looks the most salient. Specifically, we propose three kinds of point-wise quality metrics of 2D linear projections for outliers, clusterings, and trends, respectively. For each sampled projection, we measure its importance by accumulating the metrics of selected points. The projection with the highest importance is recommended. Second, we design an exploring interface with a scatterplot, a projection trail map, and a control panel. Our interface allows users to explore projections by specifying interested data subsets. At last, we employ three datasets and demonstrate the effectiveness of our approach through three case studies of exploring clusters, outliers, and trends.</p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"48 ","pages":"Pages 52-60"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.08.003","citationCount":"7","resultStr":"{\"title\":\"Exploring linear projections for revealing clusters, outliers, and trends in subsets of multi-dimensional datasets\",\"authors\":\"Jiazhi Xia , Le Gao , Kezhi Kong , Ying Zhao , Yi Chen , Xiaoyan Kui , Yixiong Liang\",\"doi\":\"10.1016/j.jvlc.2018.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Identifying patterns in 2D linear projections is important in understanding multi-dimensional datasets. However, local patterns, which are composed of partial data points, are usually obscured by noises and missed in traditional quality measure approaches that measure the whole dataset. In this paper, we propose an interactive interface to explore 2D linear projections with visual patterns on subsets. First, we propose a voting-based algorithm to recommend optimal projection, in which the identified pattern looks the most salient. Specifically, we propose three kinds of point-wise quality metrics of 2D linear projections for outliers, clusterings, and trends, respectively. For each sampled projection, we measure its importance by accumulating the metrics of selected points. The projection with the highest importance is recommended. Second, we design an exploring interface with a scatterplot, a projection trail map, and a control panel. Our interface allows users to explore projections by specifying interested data subsets. At last, we employ three datasets and demonstrate the effectiveness of our approach through three case studies of exploring clusters, outliers, and trends.</p></div>\",\"PeriodicalId\":54754,\"journal\":{\"name\":\"Journal of Visual Languages and Computing\",\"volume\":\"48 \",\"pages\":\"Pages 52-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.08.003\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Languages and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1045926X18301289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X18301289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Exploring linear projections for revealing clusters, outliers, and trends in subsets of multi-dimensional datasets
Identifying patterns in 2D linear projections is important in understanding multi-dimensional datasets. However, local patterns, which are composed of partial data points, are usually obscured by noises and missed in traditional quality measure approaches that measure the whole dataset. In this paper, we propose an interactive interface to explore 2D linear projections with visual patterns on subsets. First, we propose a voting-based algorithm to recommend optimal projection, in which the identified pattern looks the most salient. Specifically, we propose three kinds of point-wise quality metrics of 2D linear projections for outliers, clusterings, and trends, respectively. For each sampled projection, we measure its importance by accumulating the metrics of selected points. The projection with the highest importance is recommended. Second, we design an exploring interface with a scatterplot, a projection trail map, and a control panel. Our interface allows users to explore projections by specifying interested data subsets. At last, we employ three datasets and demonstrate the effectiveness of our approach through three case studies of exploring clusters, outliers, and trends.
期刊介绍:
The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.