改进的多维数据视觉相关性分析

Yi Zhang, Teng Liu, Kefei Li, Jiawan Zhang
{"title":"改进的多维数据视觉相关性分析","authors":"Yi Zhang,&nbsp;Teng Liu,&nbsp;Kefei Li,&nbsp;Jiawan Zhang","doi":"10.1016/j.jvlc.2017.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>With the era of data explosion coming, multidimensional visualization, as one of the most helpful data analysis technologies, is more frequently applied to the tasks of multidimensional data analysis. Correlation analysis is an efficient technique to reveal the complex relationships existing among the dimensions in multidimensional data. However, for the multidimensional data with complex dimension features,traditional correlation analysis methods are inaccurate and limited. In this paper, we introduce the improved Pearson correlation coefficient and mutual information correlation analysis respectively to detect the dimensions’ linear and non-linear correlations. For the linear case,all dimensions are classified into three groups according to their distributions. Then we correspondingly select the appropriate parameters for each group of dimensions to calculate their correlations. For the non-linear case,we cluster the data within each dimension. Then their probability distributions are calculated to analyze the dimensions’ correlations and dependencies based on the mutual information correlation analysis. Finally,we use the relationships between dimensions as the criteria for interactive ordering of axes in parallel coordinate displays.</p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"41 ","pages":"Pages 121-132"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2017.03.005","citationCount":"15","resultStr":"{\"title\":\"Improved visual correlation analysis for multidimensional data\",\"authors\":\"Yi Zhang,&nbsp;Teng Liu,&nbsp;Kefei Li,&nbsp;Jiawan Zhang\",\"doi\":\"10.1016/j.jvlc.2017.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the era of data explosion coming, multidimensional visualization, as one of the most helpful data analysis technologies, is more frequently applied to the tasks of multidimensional data analysis. Correlation analysis is an efficient technique to reveal the complex relationships existing among the dimensions in multidimensional data. However, for the multidimensional data with complex dimension features,traditional correlation analysis methods are inaccurate and limited. In this paper, we introduce the improved Pearson correlation coefficient and mutual information correlation analysis respectively to detect the dimensions’ linear and non-linear correlations. For the linear case,all dimensions are classified into three groups according to their distributions. Then we correspondingly select the appropriate parameters for each group of dimensions to calculate their correlations. For the non-linear case,we cluster the data within each dimension. Then their probability distributions are calculated to analyze the dimensions’ correlations and dependencies based on the mutual information correlation analysis. Finally,we use the relationships between dimensions as the criteria for interactive ordering of axes in parallel coordinate displays.</p></div>\",\"PeriodicalId\":54754,\"journal\":{\"name\":\"Journal of Visual Languages and Computing\",\"volume\":\"41 \",\"pages\":\"Pages 121-132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jvlc.2017.03.005\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Languages and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1045926X16301719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X16301719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 15

摘要

随着数据爆炸时代的到来,多维可视化作为最有用的数据分析技术之一,越来越多地应用于多维数据分析任务。相关性分析是揭示多维数据中各维度之间存在的复杂关系的一种有效技术。然而,对于具有复杂维度特征的多维数据,传统的相关性分析方法是不准确和有限的。在本文中,我们分别引入了改进的Pearson相关系数和互信息相关分析来检测维度的线性和非线性相关性。对于线性情况,所有维度根据其分布分为三组。然后,我们相应地为每组维度选择合适的参数来计算它们的相关性。对于非线性情况,我们对每个维度内的数据进行聚类。然后在互信息相关性分析的基础上,计算它们的概率分布来分析维度的相关性和依赖性。最后,我们使用尺寸之间的关系作为平行坐标显示中轴的交互式排序的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved visual correlation analysis for multidimensional data

With the era of data explosion coming, multidimensional visualization, as one of the most helpful data analysis technologies, is more frequently applied to the tasks of multidimensional data analysis. Correlation analysis is an efficient technique to reveal the complex relationships existing among the dimensions in multidimensional data. However, for the multidimensional data with complex dimension features,traditional correlation analysis methods are inaccurate and limited. In this paper, we introduce the improved Pearson correlation coefficient and mutual information correlation analysis respectively to detect the dimensions’ linear and non-linear correlations. For the linear case,all dimensions are classified into three groups according to their distributions. Then we correspondingly select the appropriate parameters for each group of dimensions to calculate their correlations. For the non-linear case,we cluster the data within each dimension. Then their probability distributions are calculated to analyze the dimensions’ correlations and dependencies based on the mutual information correlation analysis. Finally,we use the relationships between dimensions as the criteria for interactive ordering of axes in parallel coordinate displays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Languages and Computing
Journal of Visual Languages and Computing 工程技术-计算机:软件工程
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
26.8 weeks
期刊介绍: The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.
期刊最新文献
Editorial Board Error recovery in parsing expression grammars through labeled failures and its implementation based on a parsing machine Visual augmentation of source code editors: A systematic mapping study Optimizing type-specific instrumentation on the JVM with reflective supertype information Qualitative representation of spatio-temporal knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1