基于SVD熵和双线性的异构数据产品排序算法

Chaman Lal Sabharwal , Bushra Anjum
{"title":"基于SVD熵和双线性的异构数据产品排序算法","authors":"Chaman Lal Sabharwal ,&nbsp;Bushra Anjum","doi":"10.1016/j.jvlc.2017.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>E-commerce websites, besides selling products and services, pay ample emphasis on providing a platform for consumers to share their opinions about past and potential purchases. They share such opinions as product reviews (star ratings, plain text, etc.) and answering product related questions (Q&amp;A data). There are several machine learning and classification approaches available to scrutinize this review data, e.g., algorithms based on Entropy measures, Bilinear Similarity, stochastic methods, etc. In this paper, we review some of the prevalent review classification techniques<span> and present a hybrid approach, involving Singular Value Decomposition (SVD), Entropy and Bilinear Similarity measures, that uses heterogeneous product data and simultaneously analyze and rank products for customers. With experimental results, we show that our approach effectively ranks products using (1) text reviews (2) Q&amp;A data (3) five-star rating of products and has 10% improved prediction accuracy as compared to the individual approaches. Also, using SVD, we achieve a 35% runtime efficiency for our algorithm while only sacrificing 1% of the prediction accuracy.</span></p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"41 ","pages":"Pages 133-141"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2017.06.001","citationCount":"2","resultStr":"{\"title\":\"An SVD-Entropy and bilinearity based product ranking algorithm using heterogeneous data\",\"authors\":\"Chaman Lal Sabharwal ,&nbsp;Bushra Anjum\",\"doi\":\"10.1016/j.jvlc.2017.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>E-commerce websites, besides selling products and services, pay ample emphasis on providing a platform for consumers to share their opinions about past and potential purchases. They share such opinions as product reviews (star ratings, plain text, etc.) and answering product related questions (Q&amp;A data). There are several machine learning and classification approaches available to scrutinize this review data, e.g., algorithms based on Entropy measures, Bilinear Similarity, stochastic methods, etc. In this paper, we review some of the prevalent review classification techniques<span> and present a hybrid approach, involving Singular Value Decomposition (SVD), Entropy and Bilinear Similarity measures, that uses heterogeneous product data and simultaneously analyze and rank products for customers. With experimental results, we show that our approach effectively ranks products using (1) text reviews (2) Q&amp;A data (3) five-star rating of products and has 10% improved prediction accuracy as compared to the individual approaches. Also, using SVD, we achieve a 35% runtime efficiency for our algorithm while only sacrificing 1% of the prediction accuracy.</span></p></div>\",\"PeriodicalId\":54754,\"journal\":{\"name\":\"Journal of Visual Languages and Computing\",\"volume\":\"41 \",\"pages\":\"Pages 133-141\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jvlc.2017.06.001\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Languages and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1045926X17300095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X17300095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

电子商务网站除了销售产品和服务外,还非常重视为消费者提供一个平台,让他们分享他们对过去和潜在购买的看法。他们分享诸如产品评论(星级、纯文本等)和回答产品相关问题(问答数据)等意见。有几种机器学习和分类方法可用于仔细审查这些评论数据,例如基于熵测度、双线性相似性、随机方法等的算法。在本文中,我们回顾了一些流行的评论分类技术,并提出了一种混合方法,包括奇异值分解(SVD)、熵和双线性相似性测度,它使用异构的产品数据,同时为客户分析和排序产品。实验结果表明,我们的方法使用(1)文本评论(2)问答对产品进行了有效的排名;产品的数据(3)五星评级,与单独的方法相比,预测准确率提高了10%。此外,使用SVD,我们的算法实现了35%的运行时效率,同时只牺牲了1%的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An SVD-Entropy and bilinearity based product ranking algorithm using heterogeneous data

E-commerce websites, besides selling products and services, pay ample emphasis on providing a platform for consumers to share their opinions about past and potential purchases. They share such opinions as product reviews (star ratings, plain text, etc.) and answering product related questions (Q&A data). There are several machine learning and classification approaches available to scrutinize this review data, e.g., algorithms based on Entropy measures, Bilinear Similarity, stochastic methods, etc. In this paper, we review some of the prevalent review classification techniques and present a hybrid approach, involving Singular Value Decomposition (SVD), Entropy and Bilinear Similarity measures, that uses heterogeneous product data and simultaneously analyze and rank products for customers. With experimental results, we show that our approach effectively ranks products using (1) text reviews (2) Q&A data (3) five-star rating of products and has 10% improved prediction accuracy as compared to the individual approaches. Also, using SVD, we achieve a 35% runtime efficiency for our algorithm while only sacrificing 1% of the prediction accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Languages and Computing
Journal of Visual Languages and Computing 工程技术-计算机:软件工程
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
26.8 weeks
期刊介绍: The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.
期刊最新文献
Editorial Board Error recovery in parsing expression grammars through labeled failures and its implementation based on a parsing machine Visual augmentation of source code editors: A systematic mapping study Optimizing type-specific instrumentation on the JVM with reflective supertype information Qualitative representation of spatio-temporal knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1