基于Wi-Fi的智能城市用户行为分析

Pierfrancesco Bellini, Daniele Cenni, Paolo Nesi , Irene Paoli
{"title":"基于Wi-Fi的智能城市用户行为分析","authors":"Pierfrancesco Bellini,&nbsp;Daniele Cenni,&nbsp;Paolo Nesi ,&nbsp;Irene Paoli","doi":"10.1016/j.jvlc.2017.08.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>Monitoring, understanding and predicting city user behaviour (hottest places, trajectories, flows, etc.) is one the major topics in the context of Smart City management. People flow surveillance provides valuable information about city conditions, useful not only for monitoring and controlling the environmental conditions, but also to optimize the deliverying of city services (security, clean, transport,..). In this context, it is mandatory to develop methods and tools for assessing people behaviour in the city. This paper presents a methodology to instrument the city via the placement of Wi-Fi Access Points, AP, and to use them as sensors to capture and understand city user behaviour with a significant precision rate (the understanding of city user behaviour is concretized with the computing of heat-maps, origin destination matrices and predicting user density). The first issue is the positioning of Wi-Fi AP in the city, thus a comparative analyses have been conducted with respect to the real data (i.e., cab traces) of the city of San Francisco. Several different positioning methodologies of APs have been proposed and compared, to minimize the cost of AP installation with the aim of producing the best origin destination matrices. In a second phase, the methodology was adopted to select suitable AP in the city of Florence (Italy), with the aim of observing city users behaviour. The obtained instrumented Firenze Wi-Fi network collected data for 6 months. The data has been analysed with data mining techniques to infer similarity patterns in AP area and related time series. The resulting model has been validated and used for predicting the number of AP accesses that is also related to number of city users. The research work described in this paper has been conducted in the scope of the EC funded Horizon 2020 project Resolute (</span><span>http://www.resolute-eu.org</span><svg><path></path></svg>), for early warning and city resilience.</p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"42 ","pages":"Pages 31-45"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2017.08.005","citationCount":"24","resultStr":"{\"title\":\"Wi-Fi based city users’ behaviour analysis for smart city\",\"authors\":\"Pierfrancesco Bellini,&nbsp;Daniele Cenni,&nbsp;Paolo Nesi ,&nbsp;Irene Paoli\",\"doi\":\"10.1016/j.jvlc.2017.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Monitoring, understanding and predicting city user behaviour (hottest places, trajectories, flows, etc.) is one the major topics in the context of Smart City management. People flow surveillance provides valuable information about city conditions, useful not only for monitoring and controlling the environmental conditions, but also to optimize the deliverying of city services (security, clean, transport,..). In this context, it is mandatory to develop methods and tools for assessing people behaviour in the city. This paper presents a methodology to instrument the city via the placement of Wi-Fi Access Points, AP, and to use them as sensors to capture and understand city user behaviour with a significant precision rate (the understanding of city user behaviour is concretized with the computing of heat-maps, origin destination matrices and predicting user density). The first issue is the positioning of Wi-Fi AP in the city, thus a comparative analyses have been conducted with respect to the real data (i.e., cab traces) of the city of San Francisco. Several different positioning methodologies of APs have been proposed and compared, to minimize the cost of AP installation with the aim of producing the best origin destination matrices. In a second phase, the methodology was adopted to select suitable AP in the city of Florence (Italy), with the aim of observing city users behaviour. The obtained instrumented Firenze Wi-Fi network collected data for 6 months. The data has been analysed with data mining techniques to infer similarity patterns in AP area and related time series. The resulting model has been validated and used for predicting the number of AP accesses that is also related to number of city users. The research work described in this paper has been conducted in the scope of the EC funded Horizon 2020 project Resolute (</span><span>http://www.resolute-eu.org</span><svg><path></path></svg>), for early warning and city resilience.</p></div>\",\"PeriodicalId\":54754,\"journal\":{\"name\":\"Journal of Visual Languages and Computing\",\"volume\":\"42 \",\"pages\":\"Pages 31-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jvlc.2017.08.005\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Languages and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1045926X17300083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X17300083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 24

摘要

监测、理解和预测城市用户行为(最热的地方、轨迹、流量等)是智能城市管理的主要主题之一。人流监测提供了有关城市条件的宝贵信息,不仅有助于监测和控制环境条件,也有助于优化城市服务(安全、清洁、交通等)的提供。在这种情况下,必须开发评估城市中人们行为的方法和工具。本文提出了一种方法,通过放置Wi-Fi接入点(AP)来监测城市,并将其用作传感器,以高精度捕捉和了解城市用户行为(通过计算热图、出发地-目的地矩阵和预测用户密度来具体化对城市用户行为的理解)。第一个问题是Wi-Fi AP在城市中的定位,因此对旧金山市的真实数据(即出租车轨迹)进行了比较分析。已经提出并比较了几种不同的AP定位方法,以最大限度地降低AP安装成本,目的是生成最佳始发地-目的地矩阵。在第二阶段,采用该方法在佛罗伦萨市(意大利)选择合适的AP,目的是观察城市用户的行为。获得的装有仪器的Firenze Wi-Fi网络收集了6个月的数据。利用数据挖掘技术对数据进行分析,推断AP区域和相关时间序列的相似模式。所得到的模型已经过验证,并用于预测AP接入的数量,该数量也与城市用户的数量有关。本文中描述的研究工作是在欧盟资助的地平线2020项目Resolute的范围内进行的(http://www.resolute-eu.org),用于预警和城市恢复能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wi-Fi based city users’ behaviour analysis for smart city

Monitoring, understanding and predicting city user behaviour (hottest places, trajectories, flows, etc.) is one the major topics in the context of Smart City management. People flow surveillance provides valuable information about city conditions, useful not only for monitoring and controlling the environmental conditions, but also to optimize the deliverying of city services (security, clean, transport,..). In this context, it is mandatory to develop methods and tools for assessing people behaviour in the city. This paper presents a methodology to instrument the city via the placement of Wi-Fi Access Points, AP, and to use them as sensors to capture and understand city user behaviour with a significant precision rate (the understanding of city user behaviour is concretized with the computing of heat-maps, origin destination matrices and predicting user density). The first issue is the positioning of Wi-Fi AP in the city, thus a comparative analyses have been conducted with respect to the real data (i.e., cab traces) of the city of San Francisco. Several different positioning methodologies of APs have been proposed and compared, to minimize the cost of AP installation with the aim of producing the best origin destination matrices. In a second phase, the methodology was adopted to select suitable AP in the city of Florence (Italy), with the aim of observing city users behaviour. The obtained instrumented Firenze Wi-Fi network collected data for 6 months. The data has been analysed with data mining techniques to infer similarity patterns in AP area and related time series. The resulting model has been validated and used for predicting the number of AP accesses that is also related to number of city users. The research work described in this paper has been conducted in the scope of the EC funded Horizon 2020 project Resolute (http://www.resolute-eu.org), for early warning and city resilience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Languages and Computing
Journal of Visual Languages and Computing 工程技术-计算机:软件工程
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
26.8 weeks
期刊介绍: The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.
期刊最新文献
Editorial Board Error recovery in parsing expression grammars through labeled failures and its implementation based on a parsing machine Visual augmentation of source code editors: A systematic mapping study Optimizing type-specific instrumentation on the JVM with reflective supertype information Qualitative representation of spatio-temporal knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1