{"title":"欧洲区域海洋生态系统模型中的底栖生物子模型","authors":"W. Ebenhöh , C. Kohlmeier , P.J. Radford","doi":"10.1016/0077-7579(95)90056-X","DOIUrl":null,"url":null,"abstract":"<div><p>The submodel describing benthic biology including a bioturbation module as incorporated in the European Regional Seas Ecosystem Model (ERSEM) is discussed. It is linked to a nutrient dynamic model. The structure of the benthic model food web is presented. There are four macrobenthic functional groups, meiobenthos and aerobic and anaerobic bacteria. The modelling uses ‘standard organisms’ as basic building blocks. The choice of parameter values is discussed. The results demonstrate the dependence of the benthic system on the pelagic system. The importance of features such as predation within functional groups for stability of the system is investigated. Detritus input from the pelagic system and detritus recycling is most important in the benthic food web. The web of carbon and nutrient fluxes through the system is analysed. On the basis of the food web analysis, the trophic positions of the functional groups are calculated. Besides the benthic biology, the mathematical formulation of the bioturbation and diffusion enhancement is discussed. Macrobenthic presence and activity enhance diffusion in the sediment and contribute essentially to vertical transport of particulate matter. This is of great importance for the vertical distribution of detritus, and as a consequence, for microbial activity in the sediment layers.</p></div>","PeriodicalId":100948,"journal":{"name":"Netherlands Journal of Sea Research","volume":"33 3","pages":"Pages 423-452"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0077-7579(95)90056-X","citationCount":"109","resultStr":"{\"title\":\"The benthic biological submodel in the European regional seas ecosystem model\",\"authors\":\"W. Ebenhöh , C. Kohlmeier , P.J. Radford\",\"doi\":\"10.1016/0077-7579(95)90056-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The submodel describing benthic biology including a bioturbation module as incorporated in the European Regional Seas Ecosystem Model (ERSEM) is discussed. It is linked to a nutrient dynamic model. The structure of the benthic model food web is presented. There are four macrobenthic functional groups, meiobenthos and aerobic and anaerobic bacteria. The modelling uses ‘standard organisms’ as basic building blocks. The choice of parameter values is discussed. The results demonstrate the dependence of the benthic system on the pelagic system. The importance of features such as predation within functional groups for stability of the system is investigated. Detritus input from the pelagic system and detritus recycling is most important in the benthic food web. The web of carbon and nutrient fluxes through the system is analysed. On the basis of the food web analysis, the trophic positions of the functional groups are calculated. Besides the benthic biology, the mathematical formulation of the bioturbation and diffusion enhancement is discussed. Macrobenthic presence and activity enhance diffusion in the sediment and contribute essentially to vertical transport of particulate matter. This is of great importance for the vertical distribution of detritus, and as a consequence, for microbial activity in the sediment layers.</p></div>\",\"PeriodicalId\":100948,\"journal\":{\"name\":\"Netherlands Journal of Sea Research\",\"volume\":\"33 3\",\"pages\":\"Pages 423-452\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0077-7579(95)90056-X\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netherlands Journal of Sea Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/007775799590056X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netherlands Journal of Sea Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/007775799590056X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The benthic biological submodel in the European regional seas ecosystem model
The submodel describing benthic biology including a bioturbation module as incorporated in the European Regional Seas Ecosystem Model (ERSEM) is discussed. It is linked to a nutrient dynamic model. The structure of the benthic model food web is presented. There are four macrobenthic functional groups, meiobenthos and aerobic and anaerobic bacteria. The modelling uses ‘standard organisms’ as basic building blocks. The choice of parameter values is discussed. The results demonstrate the dependence of the benthic system on the pelagic system. The importance of features such as predation within functional groups for stability of the system is investigated. Detritus input from the pelagic system and detritus recycling is most important in the benthic food web. The web of carbon and nutrient fluxes through the system is analysed. On the basis of the food web analysis, the trophic positions of the functional groups are calculated. Besides the benthic biology, the mathematical formulation of the bioturbation and diffusion enhancement is discussed. Macrobenthic presence and activity enhance diffusion in the sediment and contribute essentially to vertical transport of particulate matter. This is of great importance for the vertical distribution of detritus, and as a consequence, for microbial activity in the sediment layers.