Edward Swinnich, Yash Jayeshbhai Dave, E. Bruce Pitman, Scott Broderick, Baishakhi Mazumder, Jung-Hun Seo
{"title":"利用材料信息学预测β-(AlxGa1-x)2O3的光学带隙","authors":"Edward Swinnich, Yash Jayeshbhai Dave, E. Bruce Pitman, Scott Broderick, Baishakhi Mazumder, Jung-Hun Seo","doi":"10.1016/j.md.2018.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the optical band gap of β-(Al<sub>x</sub>Ga<sub>1-x</sub>)<sub>2</sub>O<sub>3</sub><span> versus the Al composition x is predicted using principal component regression and a Gaussian stochastic process. Properties were sourced from other mature Al-alloyed compound semiconductors to form a band gap model. It is found that the electronic band gap, the thermal conductivity, and the Al composition have the greatest influences on the optical band gap. A final relation is generated from a hybrid informatics approach combining information gained from multiple models. The optical band gap of β-(Al</span><sub>x</sub>Ga<sub>1-x</sub>)<sub>2</sub>O<sub>3</sub> versus the Al composition is predicted and agrees well with measured optical band gap.</p></div>","PeriodicalId":100888,"journal":{"name":"Materials Discovery","volume":"11 ","pages":"Pages 1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.md.2018.06.001","citationCount":"15","resultStr":"{\"title\":\"Prediction of optical band gap of β-(AlxGa1-x)2O3 using material informatics\",\"authors\":\"Edward Swinnich, Yash Jayeshbhai Dave, E. Bruce Pitman, Scott Broderick, Baishakhi Mazumder, Jung-Hun Seo\",\"doi\":\"10.1016/j.md.2018.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the optical band gap of β-(Al<sub>x</sub>Ga<sub>1-x</sub>)<sub>2</sub>O<sub>3</sub><span> versus the Al composition x is predicted using principal component regression and a Gaussian stochastic process. Properties were sourced from other mature Al-alloyed compound semiconductors to form a band gap model. It is found that the electronic band gap, the thermal conductivity, and the Al composition have the greatest influences on the optical band gap. A final relation is generated from a hybrid informatics approach combining information gained from multiple models. The optical band gap of β-(Al</span><sub>x</sub>Ga<sub>1-x</sub>)<sub>2</sub>O<sub>3</sub> versus the Al composition is predicted and agrees well with measured optical band gap.</p></div>\",\"PeriodicalId\":100888,\"journal\":{\"name\":\"Materials Discovery\",\"volume\":\"11 \",\"pages\":\"Pages 1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.md.2018.06.001\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352924518300103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352924518300103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of optical band gap of β-(AlxGa1-x)2O3 using material informatics
In this study, the optical band gap of β-(AlxGa1-x)2O3 versus the Al composition x is predicted using principal component regression and a Gaussian stochastic process. Properties were sourced from other mature Al-alloyed compound semiconductors to form a band gap model. It is found that the electronic band gap, the thermal conductivity, and the Al composition have the greatest influences on the optical band gap. A final relation is generated from a hybrid informatics approach combining information gained from multiple models. The optical band gap of β-(AlxGa1-x)2O3 versus the Al composition is predicted and agrees well with measured optical band gap.