MG AZ31孪晶激活随应变的演化:一项机器学习研究

Andrew D. Orme , David T. Fullwood , Michael P. Miles , Christophe Giraud-Carrier
{"title":"MG AZ31孪晶激活随应变的演化:一项机器学习研究","authors":"Andrew D. Orme ,&nbsp;David T. Fullwood ,&nbsp;Michael P. Miles ,&nbsp;Christophe Giraud-Carrier","doi":"10.1016/j.md.2018.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Complex relationships between microstructure and twin formation in AZ31 magnesium are investigated as a function of increasing strain using supervised machine learning. In one approach, strain is incorporated as an implicit attribute in a single predictive model, in a second method, separate decision trees are formed for each strain level. A comparison of the methods shows that the second better uncovers the underlying physics. The correlations revealed are found to exhibit similarities with parameters used in conventional modeling techniques, leading to the conclusion that machine learning has potential to assist in future microstructural modeling.</p></div>","PeriodicalId":100888,"journal":{"name":"Materials Discovery","volume":"12 ","pages":"Pages 20-29"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.md.2018.09.002","citationCount":"2","resultStr":"{\"title\":\"Evolution of MG AZ31 twin activation with strain: A machine learning study\",\"authors\":\"Andrew D. Orme ,&nbsp;David T. Fullwood ,&nbsp;Michael P. Miles ,&nbsp;Christophe Giraud-Carrier\",\"doi\":\"10.1016/j.md.2018.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Complex relationships between microstructure and twin formation in AZ31 magnesium are investigated as a function of increasing strain using supervised machine learning. In one approach, strain is incorporated as an implicit attribute in a single predictive model, in a second method, separate decision trees are formed for each strain level. A comparison of the methods shows that the second better uncovers the underlying physics. The correlations revealed are found to exhibit similarities with parameters used in conventional modeling techniques, leading to the conclusion that machine learning has potential to assist in future microstructural modeling.</p></div>\",\"PeriodicalId\":100888,\"journal\":{\"name\":\"Materials Discovery\",\"volume\":\"12 \",\"pages\":\"Pages 20-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.md.2018.09.002\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352924518300206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352924518300206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

使用监督机器学习研究了AZ31镁中微观结构和孪晶形成之间的复杂关系,作为应变增加的函数。在一种方法中,应变作为隐含属性被纳入单个预测模型中,在第二种方法中为每个应变水平形成单独的决策树。两种方法的比较表明,第二种方法更好地揭示了潜在的物理学。发现所揭示的相关性与传统建模技术中使用的参数表现出相似性,从而得出结论,机器学习有可能帮助未来的微观结构建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution of MG AZ31 twin activation with strain: A machine learning study

Complex relationships between microstructure and twin formation in AZ31 magnesium are investigated as a function of increasing strain using supervised machine learning. In one approach, strain is incorporated as an implicit attribute in a single predictive model, in a second method, separate decision trees are formed for each strain level. A comparison of the methods shows that the second better uncovers the underlying physics. The correlations revealed are found to exhibit similarities with parameters used in conventional modeling techniques, leading to the conclusion that machine learning has potential to assist in future microstructural modeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of MG AZ31 twin activation with strain: A machine learning study An implementation of ICME in materials information exchanging interfaces Microwave-assisted synthesis, characterization and photoluminescence interaction studies of undoped, Zr2+, Rh3+ and Pd2+ doped ZnS quantum dots Experimental and theoretical tools for corrosion inhibition study of mild steel in aqueous hydrochloric acid solution by new indanones derivatives Mathematical analysis on the effect of tin on mechanical, electrical and thermal properties in magnesium-tin alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1