Rüdiger M. Exner, Fernando Cortezon-Tamarit, Haobo Ge, Charareh Pourzand and Sofia I. Pascu*,
{"title":"meso-Cl三碳菁染料在肽键生成共轭反应中的化学研究","authors":"Rüdiger M. Exner, Fernando Cortezon-Tamarit, Haobo Ge, Charareh Pourzand and Sofia I. Pascu*, ","doi":"10.1021/acsbiomedchemau.2c00053","DOIUrl":null,"url":null,"abstract":"<p >Tricarbocyanine dyes have become popular tools in life sciences and medicine. Their near-infrared (NIR) fluorescence makes them ideal agents for imaging of thick specimens or <i>in vivo</i> imaging, <i>e.g.</i>, in fluorescence-guided surgery. Among other types of cyanine dyes, <i>meso</i>-Cl tricarbocyanine dyes have received a surge of interest, as it emerged that their high reactivity makes them inherently tumor-targeting. As such, significant research efforts have focused on conjugating these to functional moieties. However, the syntheses generally suffer from low yields. Hereby, we report on the reaction of <i>meso</i>-Cl dyes with a small selection of coupling reagents to give the corresponding keto-polymethines, potentially explaining low yields and the prevalence of monofunctionalized cyanine conjugates in the current state of the art of functional near-infrared dyes. We present the synthesis and isolation of the first keto-polymethine-based conjugate and present preliminary investigation in the prostate cancer cell lines PC3 and DU145 by confocal microscopy and discuss changes to optical properties in biological media.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"2 6","pages":"642–654"},"PeriodicalIF":3.8000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.2c00053","citationCount":"1","resultStr":"{\"title\":\"Unraveling the Chemistry of meso-Cl Tricarbocyanine Dyes in Conjugation Reactions for the Creation of Peptide Bonds\",\"authors\":\"Rüdiger M. Exner, Fernando Cortezon-Tamarit, Haobo Ge, Charareh Pourzand and Sofia I. Pascu*, \",\"doi\":\"10.1021/acsbiomedchemau.2c00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Tricarbocyanine dyes have become popular tools in life sciences and medicine. Their near-infrared (NIR) fluorescence makes them ideal agents for imaging of thick specimens or <i>in vivo</i> imaging, <i>e.g.</i>, in fluorescence-guided surgery. Among other types of cyanine dyes, <i>meso</i>-Cl tricarbocyanine dyes have received a surge of interest, as it emerged that their high reactivity makes them inherently tumor-targeting. As such, significant research efforts have focused on conjugating these to functional moieties. However, the syntheses generally suffer from low yields. Hereby, we report on the reaction of <i>meso</i>-Cl dyes with a small selection of coupling reagents to give the corresponding keto-polymethines, potentially explaining low yields and the prevalence of monofunctionalized cyanine conjugates in the current state of the art of functional near-infrared dyes. We present the synthesis and isolation of the first keto-polymethine-based conjugate and present preliminary investigation in the prostate cancer cell lines PC3 and DU145 by confocal microscopy and discuss changes to optical properties in biological media.</p>\",\"PeriodicalId\":29802,\"journal\":{\"name\":\"ACS Bio & Med Chem Au\",\"volume\":\"2 6\",\"pages\":\"642–654\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.2c00053\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Bio & Med Chem Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Unraveling the Chemistry of meso-Cl Tricarbocyanine Dyes in Conjugation Reactions for the Creation of Peptide Bonds
Tricarbocyanine dyes have become popular tools in life sciences and medicine. Their near-infrared (NIR) fluorescence makes them ideal agents for imaging of thick specimens or in vivo imaging, e.g., in fluorescence-guided surgery. Among other types of cyanine dyes, meso-Cl tricarbocyanine dyes have received a surge of interest, as it emerged that their high reactivity makes them inherently tumor-targeting. As such, significant research efforts have focused on conjugating these to functional moieties. However, the syntheses generally suffer from low yields. Hereby, we report on the reaction of meso-Cl dyes with a small selection of coupling reagents to give the corresponding keto-polymethines, potentially explaining low yields and the prevalence of monofunctionalized cyanine conjugates in the current state of the art of functional near-infrared dyes. We present the synthesis and isolation of the first keto-polymethine-based conjugate and present preliminary investigation in the prostate cancer cell lines PC3 and DU145 by confocal microscopy and discuss changes to optical properties in biological media.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.