Dan-Dan He , Meng-Mei Cui , Teng-Li Zhang, Gong-Zheng Hu, Jian-Hua Liu, Yu-Shan Pan
{"title":"鸡大肠杆菌ST224菌株中携带IncI1/ST136质粒的blaCMY-2-携带IncC和rmtB的特性","authors":"Dan-Dan He , Meng-Mei Cui , Teng-Li Zhang, Gong-Zheng Hu, Jian-Hua Liu, Yu-Shan Pan","doi":"10.1016/j.plasmid.2021.102555","DOIUrl":null,"url":null,"abstract":"<div><p>To analyze characteristics and underlying evolutionary processes of IncC and IncI1 plasmids in a multidrug-resistant avian <em>E. coli</em><span> strain, antibiotic susceptibility<span> testing, PCR, conjugation assays, and next-generation sequencing were performed. The type 1 IncC plasmid pEC009.1 harbored three antimicrobial resistance regions including IS</span></span><em>Ecp1</em>-<em>bla</em><sub>CMY-2</sub>-<em>blc</em>-<em>sugE</em><span><span>, ARI-B resistance island, and ARI-A island that was a mosaic multidrug resistance region (MRR) comprised of a class 1 </span>integron with cassette array |</span><em>aac</em>(6′)<em>-II</em>(<em>aacA7</em>)|<em>qacE∆1</em>|<em>sul1</em>|, IS<em>26</em>-<em>mphR</em>(A)-<em>mrx</em>-<em>mph</em>(A)-IS<em>26</em>, IS<em>26</em>-<em>fosA3</em>-IS<em>26</em>, and mercury resistance cluster <em>merRTPABDE</em>. It is the first report of three different size circular forms derived from IS<em>26</em>-<em>mphR</em>(A)-<em>mrx</em>-<em>mph</em>(A)-IS<em>26</em>-<em>fosA3</em>-IS<em>26</em><span> in ARI-A of type 1 IncC plasmid. In IncI1/ST136 pEC009.2, the truncated transposon Tn</span><em>1722</em> carrying <em>bla</em><sub>TEM-1b</sub>, <em>rmtB</em>, <em>aac(3)-IId</em>(<em>aacC2d</em>), and a class 1 integron with cassette array |<em>dfrA12</em>|orfF|<em>aadA2</em><span>|, inserted into the plasmid backbone generating 5-bp direct repeats (DRs, TATAA) at the boundaries of the region, which was highly similar to that of other IncI1 plasmids, and differed by the arrangements of resistance determinants. Comparison among two epidemic plasmid lineages showed complex MRRs respectively located in the specific position in type 1 IncC and IncI1/ST136 plasmids with conserved backbones, and these have evolved via multiple events involved in mobile elements-mediated loss and gain of resistance genes and accessory genes. Strains harboring these plasmids may serve as a reservoir for antibiotic resistance genes, thereby contributing to the rapid spread of resistance genes and posing a public health threat.</span></p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":"114 ","pages":"Article 102555"},"PeriodicalIF":1.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102555","citationCount":"4","resultStr":"{\"title\":\"Characterization of blaCMY-2-carrying IncC and rmtB-carrying IncI1/ST136 plasmids in an avian Escherichia coli ST224 strain\",\"authors\":\"Dan-Dan He , Meng-Mei Cui , Teng-Li Zhang, Gong-Zheng Hu, Jian-Hua Liu, Yu-Shan Pan\",\"doi\":\"10.1016/j.plasmid.2021.102555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To analyze characteristics and underlying evolutionary processes of IncC and IncI1 plasmids in a multidrug-resistant avian <em>E. coli</em><span> strain, antibiotic susceptibility<span> testing, PCR, conjugation assays, and next-generation sequencing were performed. The type 1 IncC plasmid pEC009.1 harbored three antimicrobial resistance regions including IS</span></span><em>Ecp1</em>-<em>bla</em><sub>CMY-2</sub>-<em>blc</em>-<em>sugE</em><span><span>, ARI-B resistance island, and ARI-A island that was a mosaic multidrug resistance region (MRR) comprised of a class 1 </span>integron with cassette array |</span><em>aac</em>(6′)<em>-II</em>(<em>aacA7</em>)|<em>qacE∆1</em>|<em>sul1</em>|, IS<em>26</em>-<em>mphR</em>(A)-<em>mrx</em>-<em>mph</em>(A)-IS<em>26</em>, IS<em>26</em>-<em>fosA3</em>-IS<em>26</em>, and mercury resistance cluster <em>merRTPABDE</em>. It is the first report of three different size circular forms derived from IS<em>26</em>-<em>mphR</em>(A)-<em>mrx</em>-<em>mph</em>(A)-IS<em>26</em>-<em>fosA3</em>-IS<em>26</em><span> in ARI-A of type 1 IncC plasmid. In IncI1/ST136 pEC009.2, the truncated transposon Tn</span><em>1722</em> carrying <em>bla</em><sub>TEM-1b</sub>, <em>rmtB</em>, <em>aac(3)-IId</em>(<em>aacC2d</em>), and a class 1 integron with cassette array |<em>dfrA12</em>|orfF|<em>aadA2</em><span>|, inserted into the plasmid backbone generating 5-bp direct repeats (DRs, TATAA) at the boundaries of the region, which was highly similar to that of other IncI1 plasmids, and differed by the arrangements of resistance determinants. Comparison among two epidemic plasmid lineages showed complex MRRs respectively located in the specific position in type 1 IncC and IncI1/ST136 plasmids with conserved backbones, and these have evolved via multiple events involved in mobile elements-mediated loss and gain of resistance genes and accessory genes. Strains harboring these plasmids may serve as a reservoir for antibiotic resistance genes, thereby contributing to the rapid spread of resistance genes and posing a public health threat.</span></p></div>\",\"PeriodicalId\":49689,\"journal\":{\"name\":\"Plasmid\",\"volume\":\"114 \",\"pages\":\"Article 102555\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102555\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmid\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147619X21000020\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmid","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147619X21000020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Characterization of blaCMY-2-carrying IncC and rmtB-carrying IncI1/ST136 plasmids in an avian Escherichia coli ST224 strain
To analyze characteristics and underlying evolutionary processes of IncC and IncI1 plasmids in a multidrug-resistant avian E. coli strain, antibiotic susceptibility testing, PCR, conjugation assays, and next-generation sequencing were performed. The type 1 IncC plasmid pEC009.1 harbored three antimicrobial resistance regions including ISEcp1-blaCMY-2-blc-sugE, ARI-B resistance island, and ARI-A island that was a mosaic multidrug resistance region (MRR) comprised of a class 1 integron with cassette array |aac(6′)-II(aacA7)|qacE∆1|sul1|, IS26-mphR(A)-mrx-mph(A)-IS26, IS26-fosA3-IS26, and mercury resistance cluster merRTPABDE. It is the first report of three different size circular forms derived from IS26-mphR(A)-mrx-mph(A)-IS26-fosA3-IS26 in ARI-A of type 1 IncC plasmid. In IncI1/ST136 pEC009.2, the truncated transposon Tn1722 carrying blaTEM-1b, rmtB, aac(3)-IId(aacC2d), and a class 1 integron with cassette array |dfrA12|orfF|aadA2|, inserted into the plasmid backbone generating 5-bp direct repeats (DRs, TATAA) at the boundaries of the region, which was highly similar to that of other IncI1 plasmids, and differed by the arrangements of resistance determinants. Comparison among two epidemic plasmid lineages showed complex MRRs respectively located in the specific position in type 1 IncC and IncI1/ST136 plasmids with conserved backbones, and these have evolved via multiple events involved in mobile elements-mediated loss and gain of resistance genes and accessory genes. Strains harboring these plasmids may serve as a reservoir for antibiotic resistance genes, thereby contributing to the rapid spread of resistance genes and posing a public health threat.
期刊介绍:
Plasmid publishes original research on genetic elements in all kingdoms of life with emphasis on maintenance, transmission and evolution of extrachromosomal elements. Objects of interest include plasmids, bacteriophages, mobile genetic elements, organelle DNA, and genomic and pathogenicity islands.