使用混合方法对内窥镜图像中的Barrett粘膜进行分割:空间模糊c-均值和水平集。

IF 1.3 Q4 ENGINEERING, BIOMEDICAL Journal of Medical Signals & Sensors Pub Date : 2016-10-01
Hossein Yousefi-Banaem, Hossein Rabbani, Peyman Adibi
{"title":"使用混合方法对内窥镜图像中的Barrett粘膜进行分割:空间模糊c-均值和水平集。","authors":"Hossein Yousefi-Banaem, Hossein Rabbani, Peyman Adibi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Barrett's mucosa is one of the most important diseases in upper gastrointestinal system that caused by gastro-esophagus reflux. If left untreated, the disease will cause distal esophagus and gastric cardia adenocarcinoma. The malignancy risk is very high in short segment Barrett's mucosa. Therefore, lesion area segmentation can improve specialist decision for treatment. In this paper, we proposed a combined fuzzy method with active models for Barrett's mucosa segmentation. In this study, we applied three methods for special area segmentation and determination. For whole disease area segmentation, we applied the hybrid fuzzy based level set method (LSM). Morphological algorithms were used for gastroesophageal junction determination, and we discriminated Barrett's mucosa from break by applying Chan-Vase method. Fuzzy c-mean and LSMs fail to segment this type of medical image due to weak boundaries. In contrast, the full automatic hybrid method with correlation approach that has used in this paper segmented the metaplasia area in the endoscopy image with desirable accuracy. The presented approach omits the manually desired cluster selection step that needed the operator manipulation. Obtained results convinced us that this approach is suitable for esophagus metaplasia segmentation.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"6 4","pages":"231-236"},"PeriodicalIF":1.3000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156999/pdf/","citationCount":"0","resultStr":"{\"title\":\"Barrett's Mucosa Segmentation in Endoscopic Images Using a Hybrid Method: Spatial Fuzzy c-mean and Level Set.\",\"authors\":\"Hossein Yousefi-Banaem, Hossein Rabbani, Peyman Adibi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Barrett's mucosa is one of the most important diseases in upper gastrointestinal system that caused by gastro-esophagus reflux. If left untreated, the disease will cause distal esophagus and gastric cardia adenocarcinoma. The malignancy risk is very high in short segment Barrett's mucosa. Therefore, lesion area segmentation can improve specialist decision for treatment. In this paper, we proposed a combined fuzzy method with active models for Barrett's mucosa segmentation. In this study, we applied three methods for special area segmentation and determination. For whole disease area segmentation, we applied the hybrid fuzzy based level set method (LSM). Morphological algorithms were used for gastroesophageal junction determination, and we discriminated Barrett's mucosa from break by applying Chan-Vase method. Fuzzy c-mean and LSMs fail to segment this type of medical image due to weak boundaries. In contrast, the full automatic hybrid method with correlation approach that has used in this paper segmented the metaplasia area in the endoscopy image with desirable accuracy. The presented approach omits the manually desired cluster selection step that needed the operator manipulation. Obtained results convinced us that this approach is suitable for esophagus metaplasia segmentation.</p>\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"6 4\",\"pages\":\"231-236\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156999/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

巴雷特粘膜是由胃食管反流引起的上消化道系统最重要的疾病之一。如果不及时治疗,这种疾病将导致食道远端和贲门腺癌。短节段Barrett粘膜恶性肿瘤的风险非常高。因此,病变区域分割可以提高专家的治疗决策。在本文中,我们提出了一种结合模糊和主动模型的Barrett粘膜分割方法。在本研究中,我们应用了三种方法进行特殊区域的分割和确定。对于整个疾病区域的分割,我们采用了基于混合模糊的水平集方法(LSM)。形态学算法用于胃食管交界处的确定,并应用Chan-Vase方法区分Barrett粘膜和破裂。模糊c-均值和LSM由于边界较弱而无法分割这种类型的医学图像。相比之下,本文使用的全自动混合方法和相关方法以理想的精度分割了内窥镜检查图像中的化生区域。所提出的方法省略了需要操作员操作的手动期望的聚类选择步骤。获得的结果使我们相信这种方法适合于食管化生的分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Barrett's Mucosa Segmentation in Endoscopic Images Using a Hybrid Method: Spatial Fuzzy c-mean and Level Set.

Barrett's mucosa is one of the most important diseases in upper gastrointestinal system that caused by gastro-esophagus reflux. If left untreated, the disease will cause distal esophagus and gastric cardia adenocarcinoma. The malignancy risk is very high in short segment Barrett's mucosa. Therefore, lesion area segmentation can improve specialist decision for treatment. In this paper, we proposed a combined fuzzy method with active models for Barrett's mucosa segmentation. In this study, we applied three methods for special area segmentation and determination. For whole disease area segmentation, we applied the hybrid fuzzy based level set method (LSM). Morphological algorithms were used for gastroesophageal junction determination, and we discriminated Barrett's mucosa from break by applying Chan-Vase method. Fuzzy c-mean and LSMs fail to segment this type of medical image due to weak boundaries. In contrast, the full automatic hybrid method with correlation approach that has used in this paper segmented the metaplasia area in the endoscopy image with desirable accuracy. The presented approach omits the manually desired cluster selection step that needed the operator manipulation. Obtained results convinced us that this approach is suitable for esophagus metaplasia segmentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Signals & Sensors
Journal of Medical Signals & Sensors ENGINEERING, BIOMEDICAL-
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
33 weeks
期刊介绍: JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.
期刊最新文献
Computed Tomography Scan and Clinical-based Complete Response Prediction in Locally Advanced Rectal Cancer after Neoadjuvant Chemoradiotherapy: A Machine Learning Approach. Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images. Advancing Proton Therapy: A Review of Geant4 Simulation for Enhanced Planning and Optimization in Hadron Therapy. Evaluation of Dose Calculation Algorithms Accuracy for ISOgray Treatment Planning System in Motorized Wedged Treatment Fields. Diagnosis of Autism in Children Based on their Gait Pattern and Movement Signs Using the Kinect Sensor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1