神经免疫系统和小脑。

IF 2.7 3区 医学 Q3 NEUROSCIENCES Cerebellum Pub Date : 2024-12-01 Epub Date: 2023-11-10 DOI:10.1007/s12311-023-01624-3
Donna L Gruol
{"title":"神经免疫系统和小脑。","authors":"Donna L Gruol","doi":"10.1007/s12311-023-01624-3","DOIUrl":null,"url":null,"abstract":"<p><p>The recognition that there is an innate immune system of the brain, referred to as the neuroimmune system, that preforms many functions comparable to that of the peripheral immune system is a relatively new concept and much is yet to be learned. The main cellular components of the neuroimmune system are the glial cells of the brain, primarily microglia and astrocytes. These cell types preform many functions through secretion of signaling factors initially known as immune factors but referred to as neuroimmune factors when produced by cells of the brain. The immune functions of glial cells play critical roles in the healthy brain to maintain homeostasis that is essential for normal brain function, to establish cytoarchitecture of the brain during development, and, in pathological conditions, to minimize the detrimental effects of disease and injury and promote repair of brain structure and function. However, dysregulation of this system can occur resulting in actions that exacerbate or perpetuate the detrimental effects of disease or injury. The neuroimmune system extends throughout all brain regions, but attention to the cerebellar system has lagged that of other brain regions and information is limited on this topic. This article is meant to provide a brief introduction to the cellular and molecular components of the brain immune system, its functions, and what is known about its role in the cerebellum. The majority of this information comes from studies of animal models and pathological conditions, where upregulation of the system facilitates investigation of its actions.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":" ","pages":"2511-2537"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585519/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Neuroimmune System and the Cerebellum.\",\"authors\":\"Donna L Gruol\",\"doi\":\"10.1007/s12311-023-01624-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The recognition that there is an innate immune system of the brain, referred to as the neuroimmune system, that preforms many functions comparable to that of the peripheral immune system is a relatively new concept and much is yet to be learned. The main cellular components of the neuroimmune system are the glial cells of the brain, primarily microglia and astrocytes. These cell types preform many functions through secretion of signaling factors initially known as immune factors but referred to as neuroimmune factors when produced by cells of the brain. The immune functions of glial cells play critical roles in the healthy brain to maintain homeostasis that is essential for normal brain function, to establish cytoarchitecture of the brain during development, and, in pathological conditions, to minimize the detrimental effects of disease and injury and promote repair of brain structure and function. However, dysregulation of this system can occur resulting in actions that exacerbate or perpetuate the detrimental effects of disease or injury. The neuroimmune system extends throughout all brain regions, but attention to the cerebellar system has lagged that of other brain regions and information is limited on this topic. This article is meant to provide a brief introduction to the cellular and molecular components of the brain immune system, its functions, and what is known about its role in the cerebellum. The majority of this information comes from studies of animal models and pathological conditions, where upregulation of the system facilitates investigation of its actions.</p>\",\"PeriodicalId\":50706,\"journal\":{\"name\":\"Cerebellum\",\"volume\":\" \",\"pages\":\"2511-2537\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585519/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebellum\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12311-023-01624-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebellum","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12311-023-01624-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

认识到大脑中有一个先天免疫系统,称为神经免疫系统,它预制了许多与外周免疫系统相当的功能,这是一个相对较新的概念,还有很多需要学习。神经免疫系统的主要细胞成分是大脑的神经胶质细胞,主要是小胶质细胞和星形胶质细胞。这些细胞类型通过分泌最初被称为免疫因子但在由大脑细胞产生时被称为神经免疫因子的信号因子来预制许多功能。神经胶质细胞的免疫功能在健康大脑中发挥着关键作用,以维持对正常大脑功能至关重要的稳态,在发育过程中建立大脑的细胞结构,并在病理条件下,最大限度地减少疾病和损伤的有害影响,促进大脑结构和功能的修复。然而,这种系统的失调可能会导致疾病或伤害的有害影响加剧或持续。神经免疫系统延伸到所有大脑区域,但对小脑系统的关注滞后于其他大脑区域,有关这一主题的信息也有限。这篇文章旨在简要介绍大脑免疫系统的细胞和分子组成、功能以及它在小脑中的作用。这些信息大多来自对动物模型和病理条件的研究,在这些研究中,系统的上调有助于研究其作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Neuroimmune System and the Cerebellum.

The recognition that there is an innate immune system of the brain, referred to as the neuroimmune system, that preforms many functions comparable to that of the peripheral immune system is a relatively new concept and much is yet to be learned. The main cellular components of the neuroimmune system are the glial cells of the brain, primarily microglia and astrocytes. These cell types preform many functions through secretion of signaling factors initially known as immune factors but referred to as neuroimmune factors when produced by cells of the brain. The immune functions of glial cells play critical roles in the healthy brain to maintain homeostasis that is essential for normal brain function, to establish cytoarchitecture of the brain during development, and, in pathological conditions, to minimize the detrimental effects of disease and injury and promote repair of brain structure and function. However, dysregulation of this system can occur resulting in actions that exacerbate or perpetuate the detrimental effects of disease or injury. The neuroimmune system extends throughout all brain regions, but attention to the cerebellar system has lagged that of other brain regions and information is limited on this topic. This article is meant to provide a brief introduction to the cellular and molecular components of the brain immune system, its functions, and what is known about its role in the cerebellum. The majority of this information comes from studies of animal models and pathological conditions, where upregulation of the system facilitates investigation of its actions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cerebellum
Cerebellum 医学-神经科学
CiteScore
6.40
自引率
14.30%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Official publication of the Society for Research on the Cerebellum devoted to genetics of cerebellar ataxias, role of cerebellum in motor control and cognitive function, and amid an ageing population, diseases associated with cerebellar dysfunction. The Cerebellum is a central source for the latest developments in fundamental neurosciences including molecular and cellular biology; behavioural neurosciences and neurochemistry; genetics; fundamental and clinical neurophysiology; neurology and neuropathology; cognition and neuroimaging. The Cerebellum benefits neuroscientists in molecular and cellular biology; neurophysiologists; researchers in neurotransmission; neurologists; radiologists; paediatricians; neuropsychologists; students of neurology and psychiatry and others.
期刊最新文献
Correction: Systematic Review and Meta-Analysis of the Diagnostic Accuracy of a Graded Gait and Truncal Instability Rating in Acutely Dizzy and Ataxic Patients. Correction: Long-Term Follow-Up Before and During Riluzole Treatment in Six Patients from Two Families with Spinocerebellar Ataxia Type 7. Correction: Silica Nanoparticles from Melon Seed Husk Abrogated Binary Metal(loid) Mediated Cerebellar Dysfunction by Attenuation of Oxido-inflammatory Response and Upregulation of Neurotrophic Factors in Male Albino Rats. Clinical Heterogeneity of Essential Tremor: Understanding Neural Substrates of Action Tremor Subtypes. The Neuroimmune System and the Cerebellum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1