{"title":"主轴装配检查点:不仅仅是跟踪主轴。","authors":"Katherine S Lawrence, JoAnne Engebrecht","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Genome stability is essential for cell proliferation and survival. Consequently, genome integrity is monitored by two major checkpoints, the DNA damage response (DDR) and the spindle assembly checkpoint (SAC). The DDR monitors DNA lesions in G1, S, and G2 stages of the cell cycle and the SAC ensures proper chromosome segregation in M phase. There have been extensive studies characterizing the roles of these checkpoints in response to the processes for which they are named; however, emerging evidence suggests significant crosstalk between the checkpoints. Here we review recent findings demonstrating overlapping roles for the SAC and DDR in metaphase, and in response to DNA damage throughout the cell cycle.</p>","PeriodicalId":101450,"journal":{"name":"Trends in cell & molecular biology","volume":"10 ","pages":"141-150"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033511/pdf/","citationCount":"0","resultStr":"{\"title\":\"The spindle assembly checkpoint: More than just keeping track of the spindle.\",\"authors\":\"Katherine S Lawrence, JoAnne Engebrecht\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome stability is essential for cell proliferation and survival. Consequently, genome integrity is monitored by two major checkpoints, the DNA damage response (DDR) and the spindle assembly checkpoint (SAC). The DDR monitors DNA lesions in G1, S, and G2 stages of the cell cycle and the SAC ensures proper chromosome segregation in M phase. There have been extensive studies characterizing the roles of these checkpoints in response to the processes for which they are named; however, emerging evidence suggests significant crosstalk between the checkpoints. Here we review recent findings demonstrating overlapping roles for the SAC and DDR in metaphase, and in response to DNA damage throughout the cell cycle.</p>\",\"PeriodicalId\":101450,\"journal\":{\"name\":\"Trends in cell & molecular biology\",\"volume\":\"10 \",\"pages\":\"141-150\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033511/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in cell & molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in cell & molecular biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The spindle assembly checkpoint: More than just keeping track of the spindle.
Genome stability is essential for cell proliferation and survival. Consequently, genome integrity is monitored by two major checkpoints, the DNA damage response (DDR) and the spindle assembly checkpoint (SAC). The DDR monitors DNA lesions in G1, S, and G2 stages of the cell cycle and the SAC ensures proper chromosome segregation in M phase. There have been extensive studies characterizing the roles of these checkpoints in response to the processes for which they are named; however, emerging evidence suggests significant crosstalk between the checkpoints. Here we review recent findings demonstrating overlapping roles for the SAC and DDR in metaphase, and in response to DNA damage throughout the cell cycle.