模拟可压缩自然对流的一种改进的离散统一气体动力学格式

Xin Wen , Lian-Ping Wang , Zhaoli Guo , Jie Shen
{"title":"模拟可压缩自然对流的一种改进的离散统一气体动力学格式","authors":"Xin Wen ,&nbsp;Lian-Ping Wang ,&nbsp;Zhaoli Guo ,&nbsp;Jie Shen","doi":"10.1016/j.jcpx.2021.100088","DOIUrl":null,"url":null,"abstract":"<div><p>Discrete unified gas-kinetic scheme (DUGKS) has been developed recently as a general method for simulating flows at all Knudsen numbers. In this study, we extend DUGKS to simulate fully compressible thermal flows. We introduce a source term to the Boltzmann equation with the Bhatnagar-Gross-Krook (BGK) collision model <span>[1]</span> to adjust heat flux and thus the Prandtl number. The fully compressible Navier-Stokes equations can be recovered by the current model. As a mesoscopic CFD approach, it requires an accurate mesoscopic implementation of the boundary conditions. Using the Chapman-Enskog approximation, we derive the “bounce-back” expressions for both temperature and velocity distribution functions, which reveal the need to consider coupling terms between the velocity and thermal fields. To validate our scheme, we first reproduce the Boussinesq flow results by simulating natural convection in a square cavity with a small temperature difference <span><math><mo>(</mo><mi>ϵ</mi><mo>=</mo><mn>0.01</mn><mo>)</mo></math></span> and a low Mach number. Then we perform simulations of steady natural convection <span><math><mo>(</mo><mi>R</mi><mi>a</mi><mo>=</mo><mn>1.0</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup><mo>)</mo></math></span> in a square cavity with differentially heated side walls and a large temperature difference <span><math><mo>(</mo><mi>ϵ</mi><mo>=</mo><mn>0.6</mn><mo>)</mo></math></span>, where the Boussinesq approximation becomes invalid. Temperature, velocity profiles, and Nusselt number distribution are obtained and compared with the benchmark results from the literature. Finally, the unsteady compressible natural convection with <span><math><mi>R</mi><mi>a</mi><mo>=</mo><mn>5.0</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>9</mn></mrow></msup><mo>,</mo><mi>ϵ</mi><mo>=</mo><mn>0.6</mn></math></span> is studied and the turbulent fluctuation statistics are computed and analyzed.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"11 ","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcpx.2021.100088","citationCount":"8","resultStr":"{\"title\":\"An improved discrete unified gas kinetic scheme for simulating compressible natural convection flows\",\"authors\":\"Xin Wen ,&nbsp;Lian-Ping Wang ,&nbsp;Zhaoli Guo ,&nbsp;Jie Shen\",\"doi\":\"10.1016/j.jcpx.2021.100088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Discrete unified gas-kinetic scheme (DUGKS) has been developed recently as a general method for simulating flows at all Knudsen numbers. In this study, we extend DUGKS to simulate fully compressible thermal flows. We introduce a source term to the Boltzmann equation with the Bhatnagar-Gross-Krook (BGK) collision model <span>[1]</span> to adjust heat flux and thus the Prandtl number. The fully compressible Navier-Stokes equations can be recovered by the current model. As a mesoscopic CFD approach, it requires an accurate mesoscopic implementation of the boundary conditions. Using the Chapman-Enskog approximation, we derive the “bounce-back” expressions for both temperature and velocity distribution functions, which reveal the need to consider coupling terms between the velocity and thermal fields. To validate our scheme, we first reproduce the Boussinesq flow results by simulating natural convection in a square cavity with a small temperature difference <span><math><mo>(</mo><mi>ϵ</mi><mo>=</mo><mn>0.01</mn><mo>)</mo></math></span> and a low Mach number. Then we perform simulations of steady natural convection <span><math><mo>(</mo><mi>R</mi><mi>a</mi><mo>=</mo><mn>1.0</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup><mo>)</mo></math></span> in a square cavity with differentially heated side walls and a large temperature difference <span><math><mo>(</mo><mi>ϵ</mi><mo>=</mo><mn>0.6</mn><mo>)</mo></math></span>, where the Boussinesq approximation becomes invalid. Temperature, velocity profiles, and Nusselt number distribution are obtained and compared with the benchmark results from the literature. Finally, the unsteady compressible natural convection with <span><math><mi>R</mi><mi>a</mi><mo>=</mo><mn>5.0</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>9</mn></mrow></msup><mo>,</mo><mi>ϵ</mi><mo>=</mo><mn>0.6</mn></math></span> is studied and the turbulent fluctuation statistics are computed and analyzed.</p></div>\",\"PeriodicalId\":37045,\"journal\":{\"name\":\"Journal of Computational Physics: X\",\"volume\":\"11 \",\"pages\":\"Article 100088\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jcpx.2021.100088\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590055221000056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055221000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

离散统一气体动力学格式(DUGKS)是最近发展起来的一种模拟所有克努森数下流动的通用方法。在这项研究中,我们扩展了DUGKS来模拟完全可压缩的热流。我们使用Bhatnagar-Gross-Krook(BGK)碰撞模型[1]将源项引入玻尔兹曼方程,以调整热通量,从而调整普朗特数。完全可压缩的Navier-Stokes方程可以通过当前模型恢复。作为一种介观CFD方法,它需要对边界条件进行精确的介观实现。使用Chapman-Enskog近似,我们导出了温度和速度分布函数的“反弹”表达式,这表明需要考虑速度场和热场之间的耦合项。为了验证我们的方案,我们首先通过模拟具有小温差(ε=0.01)和低马赫数的方形空腔中的自然对流来重现Boussinesq流动结果。然后,我们在具有不同加热侧壁和大温差(ε=0.6)的方形空腔中模拟稳定的自然对流(Ra=1.0×106),其中Boussinesq近似无效。获得了温度、速度剖面和努塞尔数分布,并与文献中的基准结果进行了比较。最后,研究了Ra=5.0×109,ε=0.6的非定常可压缩自然对流,并计算和分析了湍流脉动统计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved discrete unified gas kinetic scheme for simulating compressible natural convection flows

Discrete unified gas-kinetic scheme (DUGKS) has been developed recently as a general method for simulating flows at all Knudsen numbers. In this study, we extend DUGKS to simulate fully compressible thermal flows. We introduce a source term to the Boltzmann equation with the Bhatnagar-Gross-Krook (BGK) collision model [1] to adjust heat flux and thus the Prandtl number. The fully compressible Navier-Stokes equations can be recovered by the current model. As a mesoscopic CFD approach, it requires an accurate mesoscopic implementation of the boundary conditions. Using the Chapman-Enskog approximation, we derive the “bounce-back” expressions for both temperature and velocity distribution functions, which reveal the need to consider coupling terms between the velocity and thermal fields. To validate our scheme, we first reproduce the Boussinesq flow results by simulating natural convection in a square cavity with a small temperature difference (ϵ=0.01) and a low Mach number. Then we perform simulations of steady natural convection (Ra=1.0×106) in a square cavity with differentially heated side walls and a large temperature difference (ϵ=0.6), where the Boussinesq approximation becomes invalid. Temperature, velocity profiles, and Nusselt number distribution are obtained and compared with the benchmark results from the literature. Finally, the unsteady compressible natural convection with Ra=5.0×109,ϵ=0.6 is studied and the turbulent fluctuation statistics are computed and analyzed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics: X
Journal of Computational Physics: X Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
6.10
自引率
0.00%
发文量
7
期刊最新文献
Editorial Board Monte Carlo radiative transfer peel off mechanism for spatially extended detectors Relative acceleration of orthonormal basis vectors for the geometric conduction blocks of the cardiac electric signal propagation on anisotropic curved surfaces Ensemble transport smoothing. Part I: Unified framework Ensemble transport smoothing. Part II: Nonlinear updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1