非均匀磁场中粒子跟踪的任意阶时间步进算法

Krasymyr Tretiak, Daniel Ruprecht
{"title":"非均匀磁场中粒子跟踪的任意阶时间步进算法","authors":"Krasymyr Tretiak,&nbsp;Daniel Ruprecht","doi":"10.1016/j.jcpx.2019.100036","DOIUrl":null,"url":null,"abstract":"<div><p>The Lorentz equations describe the motion of electrically charged particles in electric and magnetic fields and are used widely in plasma physics. The most popular numerical algorithm for solving them is the Boris method, a variant of the Störmer-Verlet algorithm. Boris method is phase space volume conserving and simulated particles typically remain near the correct trajectory. However, it is only second order accurate. Therefore, in scenarios where it is not enough to know that a particle stays on the right trajectory but one needs to know where on the trajectory the particle is at a given time, Boris method requires very small time steps to deliver accurate phase information, making it computationally expensive. We derive an improved version of the high-order Boris spectral deferred correction algorithm (Boris-SDC) by adopting a convergence acceleration strategy for second order problems based on the Generalised Minimum Residual (GMRES) method. Our new algorithm is easy to implement as it still relies on the standard Boris method. Like Boris-SDC it can deliver arbitrary order of accuracy through simple changes of runtime parameter but possesses better long-term energy stability. We demonstrate for two examples, a magnetic mirror trap and the Solev'ev equilibrium, that the new method can deliver better accuracy at lower computational cost compared to the standard Boris method. While our examples are motivated by tracking ions in the magnetic field of a nuclear fusion reactor, the introduced algorithm can potentially deliver similar improvements in efficiency for other applications.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"4 ","pages":"Article 100036"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcpx.2019.100036","citationCount":"6","resultStr":"{\"title\":\"An arbitrary order time-stepping algorithm for tracking particles in inhomogeneous magnetic fields\",\"authors\":\"Krasymyr Tretiak,&nbsp;Daniel Ruprecht\",\"doi\":\"10.1016/j.jcpx.2019.100036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Lorentz equations describe the motion of electrically charged particles in electric and magnetic fields and are used widely in plasma physics. The most popular numerical algorithm for solving them is the Boris method, a variant of the Störmer-Verlet algorithm. Boris method is phase space volume conserving and simulated particles typically remain near the correct trajectory. However, it is only second order accurate. Therefore, in scenarios where it is not enough to know that a particle stays on the right trajectory but one needs to know where on the trajectory the particle is at a given time, Boris method requires very small time steps to deliver accurate phase information, making it computationally expensive. We derive an improved version of the high-order Boris spectral deferred correction algorithm (Boris-SDC) by adopting a convergence acceleration strategy for second order problems based on the Generalised Minimum Residual (GMRES) method. Our new algorithm is easy to implement as it still relies on the standard Boris method. Like Boris-SDC it can deliver arbitrary order of accuracy through simple changes of runtime parameter but possesses better long-term energy stability. We demonstrate for two examples, a magnetic mirror trap and the Solev'ev equilibrium, that the new method can deliver better accuracy at lower computational cost compared to the standard Boris method. While our examples are motivated by tracking ions in the magnetic field of a nuclear fusion reactor, the introduced algorithm can potentially deliver similar improvements in efficiency for other applications.</p></div>\",\"PeriodicalId\":37045,\"journal\":{\"name\":\"Journal of Computational Physics: X\",\"volume\":\"4 \",\"pages\":\"Article 100036\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jcpx.2019.100036\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590055219300526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055219300526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

洛伦兹方程描述了带电粒子在电场和磁场中的运动,在等离子体物理学中得到了广泛的应用。求解它们最流行的数值算法是Boris方法,它是Störmer-Verlet算法的变体。Boris方法是相空间体积守恒的,模拟粒子通常保持在正确的轨迹附近。然而,它只是二阶精度。因此,在仅仅知道粒子停留在正确的轨迹上是不够的,但需要知道粒子在给定时间在轨迹上的位置的情况下,Boris方法需要非常小的时间步长来提供准确的相位信息,这使得它的计算成本很高。我们在广义最小残差(GMRES)方法的基础上,采用二阶问题的收敛加速策略,导出了高阶Boris谱延迟校正算法(Boris SDC)的改进版本。我们的新算法很容易实现,因为它仍然依赖于标准的Boris方法。与Boris SDC一样,它可以通过简单的运行时参数变化来提供任意数量级的精度,但具有更好的长期能量稳定性。我们通过两个例子,即磁镜陷阱和Solev’ev平衡,证明了与标准Boris方法相比,新方法可以以更低的计算成本提供更好的精度。虽然我们的例子的动机是跟踪核聚变反应堆磁场中的离子,但引入的算法可能会为其他应用带来类似的效率提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An arbitrary order time-stepping algorithm for tracking particles in inhomogeneous magnetic fields

The Lorentz equations describe the motion of electrically charged particles in electric and magnetic fields and are used widely in plasma physics. The most popular numerical algorithm for solving them is the Boris method, a variant of the Störmer-Verlet algorithm. Boris method is phase space volume conserving and simulated particles typically remain near the correct trajectory. However, it is only second order accurate. Therefore, in scenarios where it is not enough to know that a particle stays on the right trajectory but one needs to know where on the trajectory the particle is at a given time, Boris method requires very small time steps to deliver accurate phase information, making it computationally expensive. We derive an improved version of the high-order Boris spectral deferred correction algorithm (Boris-SDC) by adopting a convergence acceleration strategy for second order problems based on the Generalised Minimum Residual (GMRES) method. Our new algorithm is easy to implement as it still relies on the standard Boris method. Like Boris-SDC it can deliver arbitrary order of accuracy through simple changes of runtime parameter but possesses better long-term energy stability. We demonstrate for two examples, a magnetic mirror trap and the Solev'ev equilibrium, that the new method can deliver better accuracy at lower computational cost compared to the standard Boris method. While our examples are motivated by tracking ions in the magnetic field of a nuclear fusion reactor, the introduced algorithm can potentially deliver similar improvements in efficiency for other applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics: X
Journal of Computational Physics: X Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
6.10
自引率
0.00%
发文量
7
期刊最新文献
Editorial Board Monte Carlo radiative transfer peel off mechanism for spatially extended detectors Relative acceleration of orthonormal basis vectors for the geometric conduction blocks of the cardiac electric signal propagation on anisotropic curved surfaces Ensemble transport smoothing. Part I: Unified framework Ensemble transport smoothing. Part II: Nonlinear updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1