多重分形分析在地球化学异常识别中的应用

Xie Shuyun , Cheng Qiuming , Ke Xianzhong , Bao Zhengyu , Wang Changming , Quan Haoli
{"title":"多重分形分析在地球化学异常识别中的应用","authors":"Xie Shuyun ,&nbsp;Cheng Qiuming ,&nbsp;Ke Xianzhong ,&nbsp;Bao Zhengyu ,&nbsp;Wang Changming ,&nbsp;Quan Haoli","doi":"10.1016/S1002-0705(08)60066-7","DOIUrl":null,"url":null,"abstract":"<div><p>The separation of anomalies from geochemical background is an important part of data analysis because lack of such identifications might have profound influence on or even distort the final analysis results. In this article, 1 672 geochemical analytical data of 11 elements, including Cu, Mo, Ag, Sn, and others, from a region within Tibet, South China, are used as one example. Together with the traditional anomaly recognition method of using the iterative mean ±2σ, local multifractality theory has been utilized to delineate the ranges of geochemical anomalies of the elements. To different degrees, on the basis of original data mapping, C-A fractal analysis and singularity exponents, Sn differs from the other 10 elements. Moreover, geochemical mapping results based on values of the multifractal asymmetry index for all elements delineate the highly anomalous area. Similar to other 10 elements, the anomalous areas of Sn delineated by the asymmetry index distribute along the main structure orientations. According to the asymmetry indexes, the 11 elements could be classified into 3 groups: (1) Ag and Au, (2) As-Sb-Cu-Pb-Zn-Mo, and (3) Sn-Bi-W. This paragenetic association of elements can be used to interpret possible origins of mineralization, which is in agreement with petrological analysis and field survey results.</p></div>","PeriodicalId":100762,"journal":{"name":"Journal of China University of Geosciences","volume":"19 4","pages":"Pages 334-342"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1002-0705(08)60066-7","citationCount":"17","resultStr":"{\"title\":\"Identification of Geochemical Anomaly by Multifractal Analysis\",\"authors\":\"Xie Shuyun ,&nbsp;Cheng Qiuming ,&nbsp;Ke Xianzhong ,&nbsp;Bao Zhengyu ,&nbsp;Wang Changming ,&nbsp;Quan Haoli\",\"doi\":\"10.1016/S1002-0705(08)60066-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The separation of anomalies from geochemical background is an important part of data analysis because lack of such identifications might have profound influence on or even distort the final analysis results. In this article, 1 672 geochemical analytical data of 11 elements, including Cu, Mo, Ag, Sn, and others, from a region within Tibet, South China, are used as one example. Together with the traditional anomaly recognition method of using the iterative mean ±2σ, local multifractality theory has been utilized to delineate the ranges of geochemical anomalies of the elements. To different degrees, on the basis of original data mapping, C-A fractal analysis and singularity exponents, Sn differs from the other 10 elements. Moreover, geochemical mapping results based on values of the multifractal asymmetry index for all elements delineate the highly anomalous area. Similar to other 10 elements, the anomalous areas of Sn delineated by the asymmetry index distribute along the main structure orientations. According to the asymmetry indexes, the 11 elements could be classified into 3 groups: (1) Ag and Au, (2) As-Sb-Cu-Pb-Zn-Mo, and (3) Sn-Bi-W. This paragenetic association of elements can be used to interpret possible origins of mineralization, which is in agreement with petrological analysis and field survey results.</p></div>\",\"PeriodicalId\":100762,\"journal\":{\"name\":\"Journal of China University of Geosciences\",\"volume\":\"19 4\",\"pages\":\"Pages 334-342\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1002-0705(08)60066-7\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of China University of Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002070508600667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of China University of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002070508600667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

异常与地球化学背景的分离是数据分析的重要组成部分,因为缺乏这种识别可能会对最终分析结果产生深远影响甚至扭曲。本文以西藏某地区的1672份Cu、Mo、Ag、Sn等11种元素的地球化学分析资料为例。结合传统的迭代平均值±2σ的异常识别方法,利用局部多重分形理论来刻画元素的地球化学异常范围。在原始数据映射、C-A分形分析和奇异指数的基础上,Sn不同于其他10种元素。此外,基于所有元素的多重分形不对称指数的地球化学绘图结果描绘了高度异常区域。与其他10种元素类似,由不对称指数描绘的Sn的异常区域沿着主结构取向分布。根据不对称指数,11种元素可分为3组:(1)Ag和Au,(2)As-Sb-Cu-Pb-Zn-Mo,(3)Sn-Bi-W。这种元素共生组合可用于解释矿化的可能起源,这与岩石学分析和野外调查结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of Geochemical Anomaly by Multifractal Analysis

The separation of anomalies from geochemical background is an important part of data analysis because lack of such identifications might have profound influence on or even distort the final analysis results. In this article, 1 672 geochemical analytical data of 11 elements, including Cu, Mo, Ag, Sn, and others, from a region within Tibet, South China, are used as one example. Together with the traditional anomaly recognition method of using the iterative mean ±2σ, local multifractality theory has been utilized to delineate the ranges of geochemical anomalies of the elements. To different degrees, on the basis of original data mapping, C-A fractal analysis and singularity exponents, Sn differs from the other 10 elements. Moreover, geochemical mapping results based on values of the multifractal asymmetry index for all elements delineate the highly anomalous area. Similar to other 10 elements, the anomalous areas of Sn delineated by the asymmetry index distribute along the main structure orientations. According to the asymmetry indexes, the 11 elements could be classified into 3 groups: (1) Ag and Au, (2) As-Sb-Cu-Pb-Zn-Mo, and (3) Sn-Bi-W. This paragenetic association of elements can be used to interpret possible origins of mineralization, which is in agreement with petrological analysis and field survey results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microbial Mats in the Mesoproterozoic Carbonates of the North China Platform and Their Potential for Hydrocarbon Generation Main Controlling Factors of Organic Matter Richness in a Permian Section of Guangyuan, Northeast Sichuan Assessment on Redox Conditions and Organic Burial of Siliciferous Sediments at the Latest Permian Dalong Formation in Shangsi, Sichuan, South China Preliminary Estimation of Paleoproductivity via TOC and Habitat Types: Which Method Is More Reliable? —A Case Study on the Ordovician–Silurian Transitional Black Shales of the Upper Yangtze Platform, South China Impact of Montmorillonite and Calcite on Release and Adsorption of Cyanobacterial Fatty Acids at Ambient Temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1