关于图神经网络中传播的分布对齐

Qinkai Zheng , Xiao Xia , Kun Zhang , Evgeny Kharlamov , Yuxiao Dong
{"title":"关于图神经网络中传播的分布对齐","authors":"Qinkai Zheng ,&nbsp;Xiao Xia ,&nbsp;Kun Zhang ,&nbsp;Evgeny Kharlamov ,&nbsp;Yuxiao Dong","doi":"10.1016/j.aiopen.2022.11.006","DOIUrl":null,"url":null,"abstract":"<div><p>Graph neural networks (GNNs) have been widely adopted for modeling graph-structure data. Most existing GNN studies have focused on designing <em>different</em> strategies to propagate information over the graph structures. After systematic investigations, we observe that the propagation step in GNNs matters, but its resultant performance improvement is insensitive to the location where we apply it. Our empirical examination further shows that the performance improvement brought by propagation mostly comes from a phenomenon of <em>distribution alignment</em>, i.e., propagation over graphs actually results in the alignment of the underlying distributions between the training and test sets. The findings are instrumental to understand GNNs, e.g., why decoupled GNNs can work as good as standard GNNs.<span><sup>1</sup></span></p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 218-228"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651022000213/pdfft?md5=e78f6562530f06a112827f05883082be&pid=1-s2.0-S2666651022000213-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the distribution alignment of propagation in graph neural networks\",\"authors\":\"Qinkai Zheng ,&nbsp;Xiao Xia ,&nbsp;Kun Zhang ,&nbsp;Evgeny Kharlamov ,&nbsp;Yuxiao Dong\",\"doi\":\"10.1016/j.aiopen.2022.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graph neural networks (GNNs) have been widely adopted for modeling graph-structure data. Most existing GNN studies have focused on designing <em>different</em> strategies to propagate information over the graph structures. After systematic investigations, we observe that the propagation step in GNNs matters, but its resultant performance improvement is insensitive to the location where we apply it. Our empirical examination further shows that the performance improvement brought by propagation mostly comes from a phenomenon of <em>distribution alignment</em>, i.e., propagation over graphs actually results in the alignment of the underlying distributions between the training and test sets. The findings are instrumental to understand GNNs, e.g., why decoupled GNNs can work as good as standard GNNs.<span><sup>1</sup></span></p></div>\",\"PeriodicalId\":100068,\"journal\":{\"name\":\"AI Open\",\"volume\":\"3 \",\"pages\":\"Pages 218-228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666651022000213/pdfft?md5=e78f6562530f06a112827f05883082be&pid=1-s2.0-S2666651022000213-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666651022000213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651022000213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图神经网络(GNN)已被广泛用于对图结构数据进行建模。大多数现有的GNN研究都集中在设计不同的策略来在图结构上传播信息。经过系统的研究,我们观察到GNN中的传播步骤很重要,但其性能改进对我们应用它的位置不敏感。我们的实证检验进一步表明,传播带来的性能改进主要来自分布对齐现象,即。,图上的传播实际上导致训练集和测试集之间的底层分布的对齐。这些发现有助于理解GNN,例如,为什么解耦的GNN可以像标准GNN一样工作。1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the distribution alignment of propagation in graph neural networks

Graph neural networks (GNNs) have been widely adopted for modeling graph-structure data. Most existing GNN studies have focused on designing different strategies to propagate information over the graph structures. After systematic investigations, we observe that the propagation step in GNNs matters, but its resultant performance improvement is insensitive to the location where we apply it. Our empirical examination further shows that the performance improvement brought by propagation mostly comes from a phenomenon of distribution alignment, i.e., propagation over graphs actually results in the alignment of the underlying distributions between the training and test sets. The findings are instrumental to understand GNNs, e.g., why decoupled GNNs can work as good as standard GNNs.1

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
期刊最新文献
GPT understands, too Adaptive negative representations for graph contrastive learning PM2.5 forecasting under distribution shift: A graph learning approach Enhancing neural network classification using fractional-order activation functions CPT: Colorful Prompt Tuning for pre-trained vision-language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1