基于误差估计的粘塑性软化材料的自适应性

Pedro Díez, Marino Arroyo, Antonio Huerta
{"title":"基于误差估计的粘塑性软化材料的自适应性","authors":"Pedro Díez,&nbsp;Marino Arroyo,&nbsp;Antonio Huerta","doi":"10.1002/(SICI)1099-1484(200002)5:2<87::AID-CFM86>3.0.CO;2-W","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the numerical simulation of strain softening mechanical problems. Two problems arise: (1) the constitutive model has to be regular and (2) the numerical technique must be able to capture the two scales of the problem (the macroscopic geometrical representation and the microscopic behaviour in the localization bands). The Perzyna viscoplastic model is used in order to obtain a regularized softening model allowing to simulate strain localization phenomena. This model is applied to quasistatic examples. The viscous regularization of quasistatic processes is also discussed: in quasistatics, the internal length associated with the obtained band width is no longer only a function of the material parameters but also depends on the boundary value problem (geometry and loads, specially loading velocity).</p><p>An adaptive computation is applied to softening viscoplastic materials showing strain localization. As the key ingredient of the adaptive strategy, a residual-type error estimator is generalized to deal with such highly non-linear material model.</p><p>In several numerical examples the adaptive process is able to detect complex collapse modes that are not captured by a first, even if fine, mesh. Consequently, adaptive strategies are found to be essential to detect the collapse mechanism and to assess the optimal location of the elements in the mesh. Copyright © 2000 John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":100899,"journal":{"name":"Mechanics of Cohesive-frictional Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/(SICI)1099-1484(200002)5:2<87::AID-CFM86>3.0.CO;2-W","citationCount":"51","resultStr":"{\"title\":\"Adaptivity based on error estimation for viscoplastic softening materials\",\"authors\":\"Pedro Díez,&nbsp;Marino Arroyo,&nbsp;Antonio Huerta\",\"doi\":\"10.1002/(SICI)1099-1484(200002)5:2<87::AID-CFM86>3.0.CO;2-W\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper focuses on the numerical simulation of strain softening mechanical problems. Two problems arise: (1) the constitutive model has to be regular and (2) the numerical technique must be able to capture the two scales of the problem (the macroscopic geometrical representation and the microscopic behaviour in the localization bands). The Perzyna viscoplastic model is used in order to obtain a regularized softening model allowing to simulate strain localization phenomena. This model is applied to quasistatic examples. The viscous regularization of quasistatic processes is also discussed: in quasistatics, the internal length associated with the obtained band width is no longer only a function of the material parameters but also depends on the boundary value problem (geometry and loads, specially loading velocity).</p><p>An adaptive computation is applied to softening viscoplastic materials showing strain localization. As the key ingredient of the adaptive strategy, a residual-type error estimator is generalized to deal with such highly non-linear material model.</p><p>In several numerical examples the adaptive process is able to detect complex collapse modes that are not captured by a first, even if fine, mesh. Consequently, adaptive strategies are found to be essential to detect the collapse mechanism and to assess the optimal location of the elements in the mesh. Copyright © 2000 John Wiley &amp; Sons, Ltd.</p>\",\"PeriodicalId\":100899,\"journal\":{\"name\":\"Mechanics of Cohesive-frictional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/(SICI)1099-1484(200002)5:2<87::AID-CFM86>3.0.CO;2-W\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Cohesive-frictional Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291099-1484%28200002%295%3A2%3C87%3A%3AAID-CFM86%3E3.0.CO%3B2-W\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Cohesive-frictional Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291099-1484%28200002%295%3A2%3C87%3A%3AAID-CFM86%3E3.0.CO%3B2-W","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

本文主要研究应变软化力学问题的数值模拟。出现了两个问题:(1)本构模型必须是规则的;(2)数值技术必须能够捕捉问题的两个尺度(宏观几何表示和局部化带中的微观行为)。Perzyna粘塑性模型用于获得正则化软化模型,从而模拟应变局部化现象。该模型应用于准静态实例。还讨论了拟静态过程的粘性正则化:在拟静态中,与所获得的带宽相关的内部长度不再仅仅是材料参数的函数,而是取决于边值问题(几何和载荷,特别是加载速度)。将自适应计算应用于显示应变局部化的软化粘塑性材料。残差型误差估计器作为自适应策略的关键组成部分,被推广用于处理这种高度非线性的材料模型。在几个数值示例中,自适应过程能够检测第一网格(即使是精细网格)未捕捉到的复杂塌陷模式。因此,发现自适应策略对于检测塌陷机制和评估网格中元素的最佳位置至关重要。版权所有©2000 John Wiley&;有限公司。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptivity based on error estimation for viscoplastic softening materials

This paper focuses on the numerical simulation of strain softening mechanical problems. Two problems arise: (1) the constitutive model has to be regular and (2) the numerical technique must be able to capture the two scales of the problem (the macroscopic geometrical representation and the microscopic behaviour in the localization bands). The Perzyna viscoplastic model is used in order to obtain a regularized softening model allowing to simulate strain localization phenomena. This model is applied to quasistatic examples. The viscous regularization of quasistatic processes is also discussed: in quasistatics, the internal length associated with the obtained band width is no longer only a function of the material parameters but also depends on the boundary value problem (geometry and loads, specially loading velocity).

An adaptive computation is applied to softening viscoplastic materials showing strain localization. As the key ingredient of the adaptive strategy, a residual-type error estimator is generalized to deal with such highly non-linear material model.

In several numerical examples the adaptive process is able to detect complex collapse modes that are not captured by a first, even if fine, mesh. Consequently, adaptive strategies are found to be essential to detect the collapse mechanism and to assess the optimal location of the elements in the mesh. Copyright © 2000 John Wiley & Sons, Ltd.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instabilities in granular materials and application to landslides Computational Geomechanics with Special Reference to Earthquake Engineering, by O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, B. A. Schrefler, T. Shiomi, by John Wiley, New York, 1999. ISBN 0-471-98285-7. GBP £100.00. Damage model for concrete-like materials coupling cracking and friction, contribution towards structural damping: first uniaxial applications Modelling of solid-phase sintering of hardmetal using a mesomechanics approach Modelling of solid‐phase sintering of hardmetal using a mesomechanics approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1