{"title":"基于索引存根表的云存储数据完整性审计","authors":"赵海春, 姚宣霞, 郑雪峰","doi":"10.13374/J.ISSN2095-9389.2019.09.15.008","DOIUrl":null,"url":null,"abstract":"With the development of cloud computing technology, more individuals and organizations have chosen cloud services to store and maintain their data and reduce the burden on local storage and corresponding maintenance costs. However, although the cloud computing infrastructure is more powerful and reliable than personal computing devices, the cloud storage server is not completely trusted due to various internal and external threats;therefore, users need to regularly check whether their data stored in the cloud server are intact. Therefore, in recent years, researchers have proposed a variety of schemes for data integrity auditing in cloud storage. Among them, in a part of public auditing schemes for cloud storage based on homomorphic authenticators, random sampling of data blocks, and random masking techniques, users need to store and maintain a two-dimensional(2 D) table related to the index information of data blocks in the file. When a user’s outsource data need to be frequently updated to avoid forgery attacks due to the similar index value of data block being reused, the design and maintenance of the 2 D table become cumbersome. In this study, to solve the abovementioned problem, an index–stub table structure was first proposed, which is simple and easy to maintain. On the basis of this structure, a thirdparty auditor auditing scheme with a privacy-preserving property was proposed for cloud storage. This scheme can effectively support various remote dynamic operations for outsource data at the block level. Then, a formal security proof for data integrity guarantee provided by the scheme was given under the random oracle model. A formal security analysis was also given for the privacy-preserving property of the audit protocol. Finally, the performance of the scheme was theoretically analyzed and compared with relevant experiments. Results indicate that the scheme has high efficiency.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"5 7","pages":"490-499"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cloud storage data integrity audit based on an index–stub table\",\"authors\":\"赵海春, 姚宣霞, 郑雪峰\",\"doi\":\"10.13374/J.ISSN2095-9389.2019.09.15.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of cloud computing technology, more individuals and organizations have chosen cloud services to store and maintain their data and reduce the burden on local storage and corresponding maintenance costs. However, although the cloud computing infrastructure is more powerful and reliable than personal computing devices, the cloud storage server is not completely trusted due to various internal and external threats;therefore, users need to regularly check whether their data stored in the cloud server are intact. Therefore, in recent years, researchers have proposed a variety of schemes for data integrity auditing in cloud storage. Among them, in a part of public auditing schemes for cloud storage based on homomorphic authenticators, random sampling of data blocks, and random masking techniques, users need to store and maintain a two-dimensional(2 D) table related to the index information of data blocks in the file. When a user’s outsource data need to be frequently updated to avoid forgery attacks due to the similar index value of data block being reused, the design and maintenance of the 2 D table become cumbersome. In this study, to solve the abovementioned problem, an index–stub table structure was first proposed, which is simple and easy to maintain. On the basis of this structure, a thirdparty auditor auditing scheme with a privacy-preserving property was proposed for cloud storage. This scheme can effectively support various remote dynamic operations for outsource data at the block level. Then, a formal security proof for data integrity guarantee provided by the scheme was given under the random oracle model. A formal security analysis was also given for the privacy-preserving property of the audit protocol. Finally, the performance of the scheme was theoretically analyzed and compared with relevant experiments. Results indicate that the scheme has high efficiency.\",\"PeriodicalId\":31263,\"journal\":{\"name\":\"工程设计学报\",\"volume\":\"5 7\",\"pages\":\"490-499\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"工程设计学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13374/J.ISSN2095-9389.2019.09.15.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13374/J.ISSN2095-9389.2019.09.15.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Cloud storage data integrity audit based on an index–stub table
With the development of cloud computing technology, more individuals and organizations have chosen cloud services to store and maintain their data and reduce the burden on local storage and corresponding maintenance costs. However, although the cloud computing infrastructure is more powerful and reliable than personal computing devices, the cloud storage server is not completely trusted due to various internal and external threats;therefore, users need to regularly check whether their data stored in the cloud server are intact. Therefore, in recent years, researchers have proposed a variety of schemes for data integrity auditing in cloud storage. Among them, in a part of public auditing schemes for cloud storage based on homomorphic authenticators, random sampling of data blocks, and random masking techniques, users need to store and maintain a two-dimensional(2 D) table related to the index information of data blocks in the file. When a user’s outsource data need to be frequently updated to avoid forgery attacks due to the similar index value of data block being reused, the design and maintenance of the 2 D table become cumbersome. In this study, to solve the abovementioned problem, an index–stub table structure was first proposed, which is simple and easy to maintain. On the basis of this structure, a thirdparty auditor auditing scheme with a privacy-preserving property was proposed for cloud storage. This scheme can effectively support various remote dynamic operations for outsource data at the block level. Then, a formal security proof for data integrity guarantee provided by the scheme was given under the random oracle model. A formal security analysis was also given for the privacy-preserving property of the audit protocol. Finally, the performance of the scheme was theoretically analyzed and compared with relevant experiments. Results indicate that the scheme has high efficiency.
期刊介绍:
Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.