{"title":"采用自适应调节的地线源TEM三维全时间多项式反演","authors":"X. Luan, Q. Di, Guoqing Xue, Bin Chen","doi":"10.32389/jeeg19-037","DOIUrl":null,"url":null,"abstract":"Ground-wire source transient electromagnetic method (GTEM) provides better investigation ability than loop source TEM at a given noise level and decay time. However, at the present time, the method still stays in the one-dimensional inversion interpretation stage. Since actual geological structures are three-dimensionally distributed, the three-dimensional electromagnetic forward and inversion are crucial for understanding the electromagnetic responses of complex geological structures. Moreover, the traditional 3D smooth inversions of geophysical data have been found to inaccurately reflect small-scale and isolated anomalies. In this study, a multinary inversion method was introduced and applied to GTEM inversions. It was found that the proposed method had the ability to enable GTEM to more accurately delineate anomalous bodies when applied to detect high-resistivity target. Then, for the purpose of avoiding the need for multiple inversion tests to determine the regularization factors, a self-adaptive scheme was proposed based on the differences between the data fitting functional and the model functional during each iteration step. It was observed that by introducing the multinary inversion with adaptive regulation, more stable and accurate inversion results were obtained. In the current study, the numerical simulation results had successfully verified that the proposed multinary inversion method had provided better resolution than the traditional inversion methods.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"102 15","pages":"403-413"},"PeriodicalIF":1.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground-wire Source TEM 3D Full Time Multinary Inversion Using Adaptive Regulation\",\"authors\":\"X. Luan, Q. Di, Guoqing Xue, Bin Chen\",\"doi\":\"10.32389/jeeg19-037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ground-wire source transient electromagnetic method (GTEM) provides better investigation ability than loop source TEM at a given noise level and decay time. However, at the present time, the method still stays in the one-dimensional inversion interpretation stage. Since actual geological structures are three-dimensionally distributed, the three-dimensional electromagnetic forward and inversion are crucial for understanding the electromagnetic responses of complex geological structures. Moreover, the traditional 3D smooth inversions of geophysical data have been found to inaccurately reflect small-scale and isolated anomalies. In this study, a multinary inversion method was introduced and applied to GTEM inversions. It was found that the proposed method had the ability to enable GTEM to more accurately delineate anomalous bodies when applied to detect high-resistivity target. Then, for the purpose of avoiding the need for multiple inversion tests to determine the regularization factors, a self-adaptive scheme was proposed based on the differences between the data fitting functional and the model functional during each iteration step. It was observed that by introducing the multinary inversion with adaptive regulation, more stable and accurate inversion results were obtained. In the current study, the numerical simulation results had successfully verified that the proposed multinary inversion method had provided better resolution than the traditional inversion methods.\",\"PeriodicalId\":15748,\"journal\":{\"name\":\"Journal of Environmental and Engineering Geophysics\",\"volume\":\"102 15\",\"pages\":\"403-413\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental and Engineering Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.32389/jeeg19-037\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.32389/jeeg19-037","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Ground-wire Source TEM 3D Full Time Multinary Inversion Using Adaptive Regulation
Ground-wire source transient electromagnetic method (GTEM) provides better investigation ability than loop source TEM at a given noise level and decay time. However, at the present time, the method still stays in the one-dimensional inversion interpretation stage. Since actual geological structures are three-dimensionally distributed, the three-dimensional electromagnetic forward and inversion are crucial for understanding the electromagnetic responses of complex geological structures. Moreover, the traditional 3D smooth inversions of geophysical data have been found to inaccurately reflect small-scale and isolated anomalies. In this study, a multinary inversion method was introduced and applied to GTEM inversions. It was found that the proposed method had the ability to enable GTEM to more accurately delineate anomalous bodies when applied to detect high-resistivity target. Then, for the purpose of avoiding the need for multiple inversion tests to determine the regularization factors, a self-adaptive scheme was proposed based on the differences between the data fitting functional and the model functional during each iteration step. It was observed that by introducing the multinary inversion with adaptive regulation, more stable and accurate inversion results were obtained. In the current study, the numerical simulation results had successfully verified that the proposed multinary inversion method had provided better resolution than the traditional inversion methods.
期刊介绍:
The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.