Giulio Bianchi Piccinini, E. Lehtonen, Fabio Forcolin, J. Engström, Deike Albers, G. Markkula, J. Lodin, J. Sandin
{"title":"司机如何应对无声自动故障?驾驶模拟器研究与计算驾驶员制动模型比较","authors":"Giulio Bianchi Piccinini, E. Lehtonen, Fabio Forcolin, J. Engström, Deike Albers, G. Markkula, J. Lodin, J. Sandin","doi":"10.1177/0018720819875347","DOIUrl":null,"url":null,"abstract":"Objective This paper aims to describe and test novel computational driver models, predicting drivers’ brake reaction times (BRTs) to different levels of lead vehicle braking, during driving with cruise control (CC) and during silent failures of adaptive cruise control (ACC). Background Validated computational models predicting BRTs to silent failures of automation are lacking but are important for assessing the safety benefits of automated driving. Method Two alternative models of driver response to silent ACC failures are proposed: a looming prediction model, assuming that drivers embody a generative model of ACC, and a lower gain model, assuming that drivers’ arousal decreases due to monitoring of the automated system. Predictions of BRTs issued by the models were tested using a driving simulator study. Results The driving simulator study confirmed the predictions of the models: (a) BRTs were significantly shorter with an increase in kinematic criticality, both during driving with CC and during driving with ACC; (b) BRTs were significantly delayed when driving with ACC compared with driving with CC. However, the predicted BRTs were longer than the ones observed, entailing a fitting of the models to the data from the study. Conclusion Both the looming prediction model and the lower gain model predict well the BRTs for the ACC driving condition. However, the looming prediction model has the advantage of being able to predict average BRTs using the exact same parameters as the model fitted to the CC driving data. Application Knowledge resulting from this research can be helpful for assessing the safety benefits of automated driving.","PeriodicalId":55048,"journal":{"name":"Human Factors and Ergonomics in Manufacturing & Service Industries","volume":"5 2","pages":"1212 - 1229"},"PeriodicalIF":2.2000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0018720819875347","citationCount":"24","resultStr":"{\"title\":\"How Do Drivers Respond to Silent Automation Failures? Driving Simulator Study and Comparison of Computational Driver Braking Models\",\"authors\":\"Giulio Bianchi Piccinini, E. Lehtonen, Fabio Forcolin, J. Engström, Deike Albers, G. Markkula, J. Lodin, J. Sandin\",\"doi\":\"10.1177/0018720819875347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective This paper aims to describe and test novel computational driver models, predicting drivers’ brake reaction times (BRTs) to different levels of lead vehicle braking, during driving with cruise control (CC) and during silent failures of adaptive cruise control (ACC). Background Validated computational models predicting BRTs to silent failures of automation are lacking but are important for assessing the safety benefits of automated driving. Method Two alternative models of driver response to silent ACC failures are proposed: a looming prediction model, assuming that drivers embody a generative model of ACC, and a lower gain model, assuming that drivers’ arousal decreases due to monitoring of the automated system. Predictions of BRTs issued by the models were tested using a driving simulator study. Results The driving simulator study confirmed the predictions of the models: (a) BRTs were significantly shorter with an increase in kinematic criticality, both during driving with CC and during driving with ACC; (b) BRTs were significantly delayed when driving with ACC compared with driving with CC. However, the predicted BRTs were longer than the ones observed, entailing a fitting of the models to the data from the study. Conclusion Both the looming prediction model and the lower gain model predict well the BRTs for the ACC driving condition. However, the looming prediction model has the advantage of being able to predict average BRTs using the exact same parameters as the model fitted to the CC driving data. Application Knowledge resulting from this research can be helpful for assessing the safety benefits of automated driving.\",\"PeriodicalId\":55048,\"journal\":{\"name\":\"Human Factors and Ergonomics in Manufacturing & Service Industries\",\"volume\":\"5 2\",\"pages\":\"1212 - 1229\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0018720819875347\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Factors and Ergonomics in Manufacturing & Service Industries\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0018720819875347\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors and Ergonomics in Manufacturing & Service Industries","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0018720819875347","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
How Do Drivers Respond to Silent Automation Failures? Driving Simulator Study and Comparison of Computational Driver Braking Models
Objective This paper aims to describe and test novel computational driver models, predicting drivers’ brake reaction times (BRTs) to different levels of lead vehicle braking, during driving with cruise control (CC) and during silent failures of adaptive cruise control (ACC). Background Validated computational models predicting BRTs to silent failures of automation are lacking but are important for assessing the safety benefits of automated driving. Method Two alternative models of driver response to silent ACC failures are proposed: a looming prediction model, assuming that drivers embody a generative model of ACC, and a lower gain model, assuming that drivers’ arousal decreases due to monitoring of the automated system. Predictions of BRTs issued by the models were tested using a driving simulator study. Results The driving simulator study confirmed the predictions of the models: (a) BRTs were significantly shorter with an increase in kinematic criticality, both during driving with CC and during driving with ACC; (b) BRTs were significantly delayed when driving with ACC compared with driving with CC. However, the predicted BRTs were longer than the ones observed, entailing a fitting of the models to the data from the study. Conclusion Both the looming prediction model and the lower gain model predict well the BRTs for the ACC driving condition. However, the looming prediction model has the advantage of being able to predict average BRTs using the exact same parameters as the model fitted to the CC driving data. Application Knowledge resulting from this research can be helpful for assessing the safety benefits of automated driving.
期刊介绍:
The purpose of Human Factors and Ergonomics in Manufacturing & Service Industries is to facilitate discovery, integration, and application of scientific knowledge about human aspects of manufacturing, and to provide a forum for worldwide dissemination of such knowledge for its application and benefit to manufacturing industries. The journal covers a broad spectrum of ergonomics and human factors issues with a focus on the design, operation and management of contemporary manufacturing systems, both in the shop floor and office environments, in the quest for manufacturing agility, i.e. enhancement and integration of human skills with hardware performance for improved market competitiveness, management of change, product and process quality, and human-system reliability. The inter- and cross-disciplinary nature of the journal allows for a wide scope of issues relevant to manufacturing system design and engineering, human resource management, social, organizational, safety, and health issues. Examples of specific subject areas of interest include: implementation of advanced manufacturing technology, human aspects of computer-aided design and engineering, work design, compensation and appraisal, selection training and education, labor-management relations, agile manufacturing and virtual companies, human factors in total quality management, prevention of work-related musculoskeletal disorders, ergonomics of workplace, equipment and tool design, ergonomics programs, guides and standards for industry, automation safety and robot systems, human skills development and knowledge enhancing technologies, reliability, and safety and worker health issues.