通过机器学习技术整合InSAR数据和锥体穿透测试来预测陆地变形

Melika Sajadian, Ana Teixeira, F. S. Tehrani, M. Lemmens
{"title":"通过机器学习技术整合InSAR数据和锥体穿透测试来预测陆地变形","authors":"Melika Sajadian, Ana Teixeira, F. S. Tehrani, M. Lemmens","doi":"10.5194/piahs-382-525-2020","DOIUrl":null,"url":null,"abstract":"Abstract. Built environments developed on compressible soils are susceptible to land deformation. The spatio-temporal monitoring and analysis of these deformations are necessary for sustainable development of cities. Techniques such as Interferometric Synthetic Aperture Radar (InSAR) or predictions based on soil mechanics using in situ characterization, such as Cone Penetration Testing (CPT) can be used for assessing such land deformations. Despite the combined advantages of these two methods, the relationship between them has not yet been investigated. Therefore, the major objective of this study is to reconcile InSAR measurements and CPT measurements using machine learning techniques in an attempt to better predict land deformation.\n","PeriodicalId":53381,"journal":{"name":"Proceedings of the International Association of Hydrological Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting land deformation by integrating InSAR data and cone penetration testing through machine learning techniques\",\"authors\":\"Melika Sajadian, Ana Teixeira, F. S. Tehrani, M. Lemmens\",\"doi\":\"10.5194/piahs-382-525-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Built environments developed on compressible soils are susceptible to land deformation. The spatio-temporal monitoring and analysis of these deformations are necessary for sustainable development of cities. Techniques such as Interferometric Synthetic Aperture Radar (InSAR) or predictions based on soil mechanics using in situ characterization, such as Cone Penetration Testing (CPT) can be used for assessing such land deformations. Despite the combined advantages of these two methods, the relationship between them has not yet been investigated. Therefore, the major objective of this study is to reconcile InSAR measurements and CPT measurements using machine learning techniques in an attempt to better predict land deformation.\\n\",\"PeriodicalId\":53381,\"journal\":{\"name\":\"Proceedings of the International Association of Hydrological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Association of Hydrological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/piahs-382-525-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Association of Hydrological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/piahs-382-525-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1

摘要

摘要在可压缩土壤上发展的建筑环境容易受到土地变形的影响。对这些变形进行时空监测和分析是城市可持续发展的必要条件。诸如干涉合成孔径雷达(InSAR)之类的技术或基于土力学的预测(使用原位表征),例如锥体穿透测试(CPT),可用于评估此类陆地变形。尽管这两种方法具有综合优势,但它们之间的关系尚未得到研究。因此,本研究的主要目的是利用机器学习技术调和InSAR测量结果和CPT测量结果,以期更好地预测陆地变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting land deformation by integrating InSAR data and cone penetration testing through machine learning techniques
Abstract. Built environments developed on compressible soils are susceptible to land deformation. The spatio-temporal monitoring and analysis of these deformations are necessary for sustainable development of cities. Techniques such as Interferometric Synthetic Aperture Radar (InSAR) or predictions based on soil mechanics using in situ characterization, such as Cone Penetration Testing (CPT) can be used for assessing such land deformations. Despite the combined advantages of these two methods, the relationship between them has not yet been investigated. Therefore, the major objective of this study is to reconcile InSAR measurements and CPT measurements using machine learning techniques in an attempt to better predict land deformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the International Association of Hydrological Sciences
Proceedings of the International Association of Hydrological Sciences Earth and Planetary Sciences-Earth and Planetary Sciences (all)
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Multi-criteria approaches to identify the shoreline retreat downstream of dams: the North African case Water Erosion in the Moulouya Watershed and its Impact on Dams' Siltation (Eastern Morocco) Validation of the altimetry-based water levels from Sentinel-3A and B in the Inner Niger Delta Pollution des eaux à usages domestiques par les éléments traces métalliques des activités anthropiques : cas du sous bassin versant du fleuve Sassandra en amont du barrage de Buyo, Côte d'Ivoire Assessing climate change impact on the hydropower potential of the Bamboi catchment (Black Volta, West Africa)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1