闭连通水的光谱概率分布及黄色物质的遥感统计推断

IF 1 4区 地球科学 Q4 GEOGRAPHY, PHYSICAL Photogrammetric Engineering and Remote Sensing Pub Date : 2021-11-01 DOI:10.14358/pers.20-00119r2
Weining Zhu, Zeliang Zhang, Zaiqiao Yang, Shuna Pang, Jiang Chen, Q. Cheng
{"title":"闭连通水的光谱概率分布及黄色物质的遥感统计推断","authors":"Weining Zhu, Zeliang Zhang, Zaiqiao Yang, Shuna Pang, Jiang Chen, Q. Cheng","doi":"10.14358/pers.20-00119r2","DOIUrl":null,"url":null,"abstract":"Unlike traditional remote sensing inversion, this study proposes a new distribution–distribution scheme, which uses statistical inferences to estimate the probability distribution of in-water components based on the probability distribution of the observed spectra. The distribution–distribution\n scheme has the advantages that it rapidly gives the statistical information of the water of interest, assists the traditional scheme in improving models, and provides more valuable information for water classification and aquatic environment analysis. In this study, based on Landsat-8 images,\n we analyzed the spectral probability distributions of 688 global waters and found that many of them were normal, log normal, and exponential distributions with diverse patterns in distribution parameters such as the mean, standard deviation, skewness, and kurtosis. Using simulated and field-measured\n data, we propose a bootstrap-based distribution–distribution scheme and develop some simple remote sensing statistical inference models to estimate the distribution parameters of yellow substance in water.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":" 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spectral Probability Distribution of Closed Connected Water and Remote Sensing Statistical Inference for Yellow Substance\",\"authors\":\"Weining Zhu, Zeliang Zhang, Zaiqiao Yang, Shuna Pang, Jiang Chen, Q. Cheng\",\"doi\":\"10.14358/pers.20-00119r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike traditional remote sensing inversion, this study proposes a new distribution–distribution scheme, which uses statistical inferences to estimate the probability distribution of in-water components based on the probability distribution of the observed spectra. The distribution–distribution\\n scheme has the advantages that it rapidly gives the statistical information of the water of interest, assists the traditional scheme in improving models, and provides more valuable information for water classification and aquatic environment analysis. In this study, based on Landsat-8 images,\\n we analyzed the spectral probability distributions of 688 global waters and found that many of them were normal, log normal, and exponential distributions with diverse patterns in distribution parameters such as the mean, standard deviation, skewness, and kurtosis. Using simulated and field-measured\\n data, we propose a bootstrap-based distribution–distribution scheme and develop some simple remote sensing statistical inference models to estimate the distribution parameters of yellow substance in water.\",\"PeriodicalId\":49702,\"journal\":{\"name\":\"Photogrammetric Engineering and Remote Sensing\",\"volume\":\" 5\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering and Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.20-00119r2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering and Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.14358/pers.20-00119r2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 4

摘要

与传统的遥感反演不同,本文提出了一种新的分布-分布方案,即基于观测光谱的概率分布,利用统计推断来估计水中组分的概率分布。分布-分布方案的优点是能够快速给出目标水域的统计信息,辅助传统方案改进模型,为水体分类和水环境分析提供更有价值的信息。本文基于Landsat-8遥感影像,对全球688个水域的光谱概率分布进行了分析,发现许多水域具有正态分布、对数正态分布和指数分布,其均值、标准差、偏度和峰度等分布参数具有不同的模式。利用模拟和实测数据,提出了一种基于自举的分布-分布方案,并建立了一些简单的遥感统计推断模型来估计水中黄色物质的分布参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectral Probability Distribution of Closed Connected Water and Remote Sensing Statistical Inference for Yellow Substance
Unlike traditional remote sensing inversion, this study proposes a new distribution–distribution scheme, which uses statistical inferences to estimate the probability distribution of in-water components based on the probability distribution of the observed spectra. The distribution–distribution scheme has the advantages that it rapidly gives the statistical information of the water of interest, assists the traditional scheme in improving models, and provides more valuable information for water classification and aquatic environment analysis. In this study, based on Landsat-8 images, we analyzed the spectral probability distributions of 688 global waters and found that many of them were normal, log normal, and exponential distributions with diverse patterns in distribution parameters such as the mean, standard deviation, skewness, and kurtosis. Using simulated and field-measured data, we propose a bootstrap-based distribution–distribution scheme and develop some simple remote sensing statistical inference models to estimate the distribution parameters of yellow substance in water.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photogrammetric Engineering and Remote Sensing
Photogrammetric Engineering and Remote Sensing 地学-成像科学与照相技术
CiteScore
1.70
自引率
15.40%
发文量
89
审稿时长
9 months
期刊介绍: Photogrammetric Engineering & Remote Sensing commonly referred to as PE&RS, is the official journal of imaging and geospatial information science and technology. Included in the journal on a regular basis are highlight articles such as the popular columns “Grids & Datums” and “Mapping Matters” and peer reviewed technical papers. We publish thousands of documents, reports, codes, and informational articles in and about the industries relating to Geospatial Sciences, Remote Sensing, Photogrammetry and other imaging sciences.
期刊最新文献
A Powerful Correspondence Selection Method for Point Cloud Registration Based on Machine Learning Identification of Critical Urban Clusters for Placating Urban Heat Island Effects over Fast-Growing Tropical City Regions: Estimating the Contribution of Different City Sizes in Escalating UHI Intensity A Novel Object Detection Method for Solid Waste Incorporating a Weighted Deformable Convolution GIS Tips & Tricks ‐ Relationships Count when Mapping? An Integrated Approach for Wildfire Photography Telemetry using WRF Numerical Forecast Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1