基于μ ct图像分析的开孔泡沫材料微观结构表征及随机建模

Q1 Mathematics GAMM Mitteilungen Pub Date : 2022-07-24 DOI:10.1002/gamm.202200018
Lukas Bogunia, Stefan Buchen, Kerstin Weinberg
{"title":"基于μ ct图像分析的开孔泡沫材料微观结构表征及随机建模","authors":"Lukas Bogunia,&nbsp;Stefan Buchen,&nbsp;Kerstin Weinberg","doi":"10.1002/gamm.202200018","DOIUrl":null,"url":null,"abstract":"<p>Foam is a cellular material whose mechanical properties are strongly determined by its complex microstructure. To study the microstructure, at first a foam characterization based on <math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\upmu $$</annotation>\n </semantics></math>CT image processing is required. Here we present an image segmentation procedure and determine the foam's characteristics using the lattice cell-based concept of intrinsic volumes. Information like porosity, pore size distribution, and ligament shape are derived. These data are then employed as input for the generation of stochastic foam volume elements with the corresponding morphology. The introduced microstructural characterization and foam generation procedures are validated by an inverse analysis, that is, by a <math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\upmu $$</annotation>\n </semantics></math>CT image analysis of the stochastic foam volume element. Additionally, an example investigation of industrial polyurethane foam proves the concepts.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"45 3-4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202200018","citationCount":"6","resultStr":"{\"title\":\"Microstructure characterization and stochastic modeling of open-cell foam based on μCT-image analysis\",\"authors\":\"Lukas Bogunia,&nbsp;Stefan Buchen,&nbsp;Kerstin Weinberg\",\"doi\":\"10.1002/gamm.202200018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Foam is a cellular material whose mechanical properties are strongly determined by its complex microstructure. To study the microstructure, at first a foam characterization based on <math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\upmu $$</annotation>\\n </semantics></math>CT image processing is required. Here we present an image segmentation procedure and determine the foam's characteristics using the lattice cell-based concept of intrinsic volumes. Information like porosity, pore size distribution, and ligament shape are derived. These data are then employed as input for the generation of stochastic foam volume elements with the corresponding morphology. The introduced microstructural characterization and foam generation procedures are validated by an inverse analysis, that is, by a <math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\upmu $$</annotation>\\n </semantics></math>CT image analysis of the stochastic foam volume element. Additionally, an example investigation of industrial polyurethane foam proves the concepts.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"45 3-4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202200018\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202200018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202200018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

泡沫是一种多孔材料,其力学性能在很大程度上取决于其复杂的微观结构。为了研究泡沫的微观结构,首先需要基于μ $$ \upmu $$ CT图像处理的泡沫表征。在这里,我们提出了一种图像分割程序,并使用基于晶格细胞的固有体积概念确定泡沫的特征。诸如孔隙度、孔径分布和韧带形状等信息都可以得到。然后将这些数据用作生成具有相应形态的随机泡沫体积单元的输入。通过对随机泡沫体积元的μ $$ \upmu $$ CT图像分析,验证了所介绍的微观结构表征和泡沫生成过程。此外,通过对工业聚氨酯泡沫的实例研究验证了这些概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure characterization and stochastic modeling of open-cell foam based on μCT-image analysis

Foam is a cellular material whose mechanical properties are strongly determined by its complex microstructure. To study the microstructure, at first a foam characterization based on μ $$ \upmu $$ CT image processing is required. Here we present an image segmentation procedure and determine the foam's characteristics using the lattice cell-based concept of intrinsic volumes. Information like porosity, pore size distribution, and ligament shape are derived. These data are then employed as input for the generation of stochastic foam volume elements with the corresponding morphology. The introduced microstructural characterization and foam generation procedures are validated by an inverse analysis, that is, by a μ $$ \upmu $$ CT image analysis of the stochastic foam volume element. Additionally, an example investigation of industrial polyurethane foam proves the concepts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
期刊最新文献
Issue Information Regularizations of forward-backward parabolic PDEs Parallel two-scale finite element implementation of a system with varying microstructure Issue Information Low Mach number limit of a diffuse interface model for two-phase flows of compressible viscous fluids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1