{"title":"通过NTB远程访问NVMe SSD","authors":"Yu-sheng Lin, Chi-Lung Wang, Chao-Tang Lee","doi":"10.4018/IJGHPC.2021070103","DOIUrl":null,"url":null,"abstract":"NVMe SSDs are deployed in data centers for applications with high performance, but its capacity and bandwidth are often underutilized. Remote access NVMe SSD enables flexible scaling and high utilization of Flash capacity and bandwidth within data centers. The current issue of remote access NVMe SSD has significant performance overheads. The research focuses on remote access NVMe SSD via NTB (non-transparent bridge). NTB is a type of PCI-Express; its memory mapping technology can allow to access memory belonging to peer servers. NVMe SSD supports multiple I/O queues to maximize the I/O parallel processing of flash; hence, NVMe SSD can provide significant performance when comparing with traditional hard drives. The research proposes a novel design based on features of NTB memory mapping and NVMe SSD multiple I/O queues. The remote and local servers can access the same NVMe SSD concurrently. The experimental results show the performance of remote access NVMe SSD can approach the local access. It is significantly excellent and proved feasible.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"2002 16","pages":"30-42"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote Access NVMe SSD via NTB\",\"authors\":\"Yu-sheng Lin, Chi-Lung Wang, Chao-Tang Lee\",\"doi\":\"10.4018/IJGHPC.2021070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NVMe SSDs are deployed in data centers for applications with high performance, but its capacity and bandwidth are often underutilized. Remote access NVMe SSD enables flexible scaling and high utilization of Flash capacity and bandwidth within data centers. The current issue of remote access NVMe SSD has significant performance overheads. The research focuses on remote access NVMe SSD via NTB (non-transparent bridge). NTB is a type of PCI-Express; its memory mapping technology can allow to access memory belonging to peer servers. NVMe SSD supports multiple I/O queues to maximize the I/O parallel processing of flash; hence, NVMe SSD can provide significant performance when comparing with traditional hard drives. The research proposes a novel design based on features of NTB memory mapping and NVMe SSD multiple I/O queues. The remote and local servers can access the same NVMe SSD concurrently. The experimental results show the performance of remote access NVMe SSD can approach the local access. It is significantly excellent and proved feasible.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"2002 16\",\"pages\":\"30-42\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJGHPC.2021070103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGHPC.2021070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
NVMe SSDs are deployed in data centers for applications with high performance, but its capacity and bandwidth are often underutilized. Remote access NVMe SSD enables flexible scaling and high utilization of Flash capacity and bandwidth within data centers. The current issue of remote access NVMe SSD has significant performance overheads. The research focuses on remote access NVMe SSD via NTB (non-transparent bridge). NTB is a type of PCI-Express; its memory mapping technology can allow to access memory belonging to peer servers. NVMe SSD supports multiple I/O queues to maximize the I/O parallel processing of flash; hence, NVMe SSD can provide significant performance when comparing with traditional hard drives. The research proposes a novel design based on features of NTB memory mapping and NVMe SSD multiple I/O queues. The remote and local servers can access the same NVMe SSD concurrently. The experimental results show the performance of remote access NVMe SSD can approach the local access. It is significantly excellent and proved feasible.