{"title":"基于小波变换模极大值和BP神经网络的车牌识别","authors":"Lin Huang, Tiejun Yang","doi":"10.1109/ICNC.2012.6234668","DOIUrl":null,"url":null,"abstract":"License plate recognition is an important part of intelligent transportation systems, and image feature extraction and recognition are the key processes. This paper describes a method of license plate identification. Firstly, wavelet transform modulus maxima is used to detect edges for the segmented characters of the plate, then the features of relative moment are extracted. Secondly, the features are fed into BP neural network for classification. Experiment results show that the method is efficient and has good recognition rate.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"95 S91","pages":"295-297"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICNC.2012.6234668","citationCount":"5","resultStr":"{\"title\":\"Vehicle license plate recognition based on wavelet transform modulus maxima and BP neural network\",\"authors\":\"Lin Huang, Tiejun Yang\",\"doi\":\"10.1109/ICNC.2012.6234668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"License plate recognition is an important part of intelligent transportation systems, and image feature extraction and recognition are the key processes. This paper describes a method of license plate identification. Firstly, wavelet transform modulus maxima is used to detect edges for the segmented characters of the plate, then the features of relative moment are extracted. Secondly, the features are fed into BP neural network for classification. Experiment results show that the method is efficient and has good recognition rate.\",\"PeriodicalId\":87274,\"journal\":{\"name\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"volume\":\"95 S91\",\"pages\":\"295-297\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ICNC.2012.6234668\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

车牌识别是智能交通系统的重要组成部分,其中图像特征提取和识别是关键环节。本文介绍了一种车牌识别方法。首先利用小波变换模极大值对分割后的图像特征进行边缘检测,然后提取相对矩特征;其次,将特征输入BP神经网络进行分类;实验结果表明,该方法具有良好的识别率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vehicle license plate recognition based on wavelet transform modulus maxima and BP neural network
License plate recognition is an important part of intelligent transportation systems, and image feature extraction and recognition are the key processes. This paper describes a method of license plate identification. Firstly, wavelet transform modulus maxima is used to detect edges for the segmented characters of the plate, then the features of relative moment are extracted. Secondly, the features are fed into BP neural network for classification. Experiment results show that the method is efficient and has good recognition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BER and HPA Nonlinearities Compensation for Joint Polar Coded SCMA System over Rayleigh Fading Channels Harmonizing Wearable Biosensor Data Streams to Test Polysubstance Detection. eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data. Automatic Detection of Opioid Intake Using Wearable Biosensor. A New Mining Method to Detect Real Time Substance Use Events from Wearable Biosensor Data Stream.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1