{"title":"细胞外基质在组织再生中的作用","authors":"D. L. Kusindarta, H. Wihadmadyatami","doi":"10.5772/INTECHOPEN.75728","DOIUrl":null,"url":null,"abstract":"Extracellular matrix (ECM) is an extensive molecule network composed of three major components: protein, glycosaminoglycan, and glycoconjugate. ECM components, as well as cell adhesion receptors, interact with each other forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, prolifera- tion, migration, differentiation, and some vital role in maintaining cells homeostasis. This chapter emphasizes the complex of ECM structure to provide a better understanding of its dynamic structural and functional characterization and multipotency. In this chapter the implications of ECM in tissue remodeling are mainly discuss on the neuronal regen- eration and wound healing mechanism in the presence of human umbilical mesenchymal conditioned medium (HU-MSCM). are also some glycoproteins as an adhesion molecule, such as integrin family fibronectin and laminin, which conduct cell attachments to the ECM by binding to collagen in the ECM and integrin. The intracellular part of integrin highly associated with the cytoskeleton thus may promote to anchoring the cell. In the end, there are various proteoglycans in the ECM that act as primary proteins and are profoundly modified by the addition of sugars.","PeriodicalId":90802,"journal":{"name":"Bone and tissue regeneration insights","volume":"91 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/INTECHOPEN.75728","citationCount":"55","resultStr":"{\"title\":\"The Role of Extracellular Matrix in Tissue Regeneration\",\"authors\":\"D. L. Kusindarta, H. Wihadmadyatami\",\"doi\":\"10.5772/INTECHOPEN.75728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracellular matrix (ECM) is an extensive molecule network composed of three major components: protein, glycosaminoglycan, and glycoconjugate. ECM components, as well as cell adhesion receptors, interact with each other forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, prolifera- tion, migration, differentiation, and some vital role in maintaining cells homeostasis. This chapter emphasizes the complex of ECM structure to provide a better understanding of its dynamic structural and functional characterization and multipotency. In this chapter the implications of ECM in tissue remodeling are mainly discuss on the neuronal regen- eration and wound healing mechanism in the presence of human umbilical mesenchymal conditioned medium (HU-MSCM). are also some glycoproteins as an adhesion molecule, such as integrin family fibronectin and laminin, which conduct cell attachments to the ECM by binding to collagen in the ECM and integrin. The intracellular part of integrin highly associated with the cytoskeleton thus may promote to anchoring the cell. In the end, there are various proteoglycans in the ECM that act as primary proteins and are profoundly modified by the addition of sugars.\",\"PeriodicalId\":90802,\"journal\":{\"name\":\"Bone and tissue regeneration insights\",\"volume\":\"91 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5772/INTECHOPEN.75728\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone and tissue regeneration insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.75728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone and tissue regeneration insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.75728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Role of Extracellular Matrix in Tissue Regeneration
Extracellular matrix (ECM) is an extensive molecule network composed of three major components: protein, glycosaminoglycan, and glycoconjugate. ECM components, as well as cell adhesion receptors, interact with each other forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, prolifera- tion, migration, differentiation, and some vital role in maintaining cells homeostasis. This chapter emphasizes the complex of ECM structure to provide a better understanding of its dynamic structural and functional characterization and multipotency. In this chapter the implications of ECM in tissue remodeling are mainly discuss on the neuronal regen- eration and wound healing mechanism in the presence of human umbilical mesenchymal conditioned medium (HU-MSCM). are also some glycoproteins as an adhesion molecule, such as integrin family fibronectin and laminin, which conduct cell attachments to the ECM by binding to collagen in the ECM and integrin. The intracellular part of integrin highly associated with the cytoskeleton thus may promote to anchoring the cell. In the end, there are various proteoglycans in the ECM that act as primary proteins and are profoundly modified by the addition of sugars.