基于时间尺度分配方法的改进经验模态分解和二维模态混合现象判断

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Advances in Data Science and Adaptive Analysis Pub Date : 2017-06-14 DOI:10.1142/S2424922X17500024
Shu-Mei Guo, J. Tsai, Chin-Yu Chen, Tzu-Cheng Yang
{"title":"基于时间尺度分配方法的改进经验模态分解和二维模态混合现象判断","authors":"Shu-Mei Guo, J. Tsai, Chin-Yu Chen, Tzu-Cheng Yang","doi":"10.1142/S2424922X17500024","DOIUrl":null,"url":null,"abstract":"In the sifting process of the traditional empirical mode decomposition (EMD), intermittence causes mode mixing phenomenon. The intrinsic mode function (IMF) with the mode mixing phenomenon loses its original real physical meaning. An improved EMD based on time scale allocation method and the two-dimensional (2D) version of our method has been extended to improve the decomposition of the mode mixing phenomenon in 2D image data. Experimental results show that the method not only improves the phenomenon correctly both for 1D signal and 2D image, but also exhibits great performance in quality and computation time.","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"360 ","pages":"1750002:1-1750002:46"},"PeriodicalIF":0.5000,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2424922X17500024","citationCount":"1","resultStr":"{\"title\":\"An Improved Empirical Mode Decomposition Based on Time Scale Allocation Method and the 2D Mode Mixing Phenomenon Judgement\",\"authors\":\"Shu-Mei Guo, J. Tsai, Chin-Yu Chen, Tzu-Cheng Yang\",\"doi\":\"10.1142/S2424922X17500024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the sifting process of the traditional empirical mode decomposition (EMD), intermittence causes mode mixing phenomenon. The intrinsic mode function (IMF) with the mode mixing phenomenon loses its original real physical meaning. An improved EMD based on time scale allocation method and the two-dimensional (2D) version of our method has been extended to improve the decomposition of the mode mixing phenomenon in 2D image data. Experimental results show that the method not only improves the phenomenon correctly both for 1D signal and 2D image, but also exhibits great performance in quality and computation time.\",\"PeriodicalId\":47145,\"journal\":{\"name\":\"Advances in Data Science and Adaptive Analysis\",\"volume\":\"360 \",\"pages\":\"1750002:1-1750002:46\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S2424922X17500024\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Science and Adaptive Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2424922X17500024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424922X17500024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

在传统经验模态分解(EMD)的筛选过程中,间歇性会导致模态混合现象。具有模态混合现象的本征模态函数(IMF)失去了其原有的真实物理意义。为了改进二维图像数据中模态混合现象的分解,对基于时间尺度分配方法和二维(2D)版本的改进EMD进行了扩展。实验结果表明,该方法不仅对一维信号和二维图像都有较好的改善,而且在质量和计算时间上都有较好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved Empirical Mode Decomposition Based on Time Scale Allocation Method and the 2D Mode Mixing Phenomenon Judgement
In the sifting process of the traditional empirical mode decomposition (EMD), intermittence causes mode mixing phenomenon. The intrinsic mode function (IMF) with the mode mixing phenomenon loses its original real physical meaning. An improved EMD based on time scale allocation method and the two-dimensional (2D) version of our method has been extended to improve the decomposition of the mode mixing phenomenon in 2D image data. Experimental results show that the method not only improves the phenomenon correctly both for 1D signal and 2D image, but also exhibits great performance in quality and computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
期刊最新文献
Assessment Of Mars Analog Habitation Plans Using Network Analysis Methodologies A Novel Genetic-Inspired Binary Firefly Algorithm for Feature Selection in the Prediction of Cervical Cancer Big Data Analytics for Predictive System Maintenance Using Machine Learning Models Data Mining for Estimating the Impact of Physical Activity Levels on the Health-Related Well-Being A Novel Autoencoder Deep Architecture for Detecting the Outlier in Heterogeneous Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1