{"title":"探地雷达在森林土壤表征中的应用及分析方法","authors":"Harrison W. Smith, P. Owens, A. Ashworth","doi":"10.32389/jeeg22-001","DOIUrl":null,"url":null,"abstract":"The use of ground penetrating radar (GPR) for soil characterization has grown rapidly in recent years due to substantial increases in computer processing power and advances in GPR methodologies. However, few studies have focused on applied GPR analysis for soil characterization and decision making in agricultural systems. In this study, we explored applications of some common qualitative and quantitative methods for GPR analysis and characterization of subsurface conditions in a silvopasture system. We analyzed GPR results using traditional visual interpretation methods to delineate depth to bedrock, clay layers, and other important soil features. Estimates of depth to bedrock correlated well with values measured in the field ([Formula: see text]), and estimates of depth to clay layers were marginally correlated with observed values ([Formula: see text]). We also extracted attributes from GPR images to train a random forest regression model to predict coarse fragment percentage and percent clay content. GPR attributes were found to be good predictors of soil coarse fragments, with an R2 value of 0.81 and root mean square error (RMSE) of 18.82 for test data. Our results demonstrate GPR can provide valuable information on subsurface features in silvopastoral systems. These results also suggest a strong potential for machine learning algorithms in GPR data analytics. Data generated using these methods could be integrated with or used to validate existing digital soil mapping methods and contribute to better understanding of subsurface characteristics for optimized soil management in silvopastoral systems.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"386 ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Applications and Analytical Methods of Ground Penetrating Radar for Soil Characterization in a Silvopastoral System\",\"authors\":\"Harrison W. Smith, P. Owens, A. Ashworth\",\"doi\":\"10.32389/jeeg22-001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of ground penetrating radar (GPR) for soil characterization has grown rapidly in recent years due to substantial increases in computer processing power and advances in GPR methodologies. However, few studies have focused on applied GPR analysis for soil characterization and decision making in agricultural systems. In this study, we explored applications of some common qualitative and quantitative methods for GPR analysis and characterization of subsurface conditions in a silvopasture system. We analyzed GPR results using traditional visual interpretation methods to delineate depth to bedrock, clay layers, and other important soil features. Estimates of depth to bedrock correlated well with values measured in the field ([Formula: see text]), and estimates of depth to clay layers were marginally correlated with observed values ([Formula: see text]). We also extracted attributes from GPR images to train a random forest regression model to predict coarse fragment percentage and percent clay content. GPR attributes were found to be good predictors of soil coarse fragments, with an R2 value of 0.81 and root mean square error (RMSE) of 18.82 for test data. Our results demonstrate GPR can provide valuable information on subsurface features in silvopastoral systems. These results also suggest a strong potential for machine learning algorithms in GPR data analytics. Data generated using these methods could be integrated with or used to validate existing digital soil mapping methods and contribute to better understanding of subsurface characteristics for optimized soil management in silvopastoral systems.\",\"PeriodicalId\":15748,\"journal\":{\"name\":\"Journal of Environmental and Engineering Geophysics\",\"volume\":\"386 \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental and Engineering Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.32389/jeeg22-001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.32389/jeeg22-001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Applications and Analytical Methods of Ground Penetrating Radar for Soil Characterization in a Silvopastoral System
The use of ground penetrating radar (GPR) for soil characterization has grown rapidly in recent years due to substantial increases in computer processing power and advances in GPR methodologies. However, few studies have focused on applied GPR analysis for soil characterization and decision making in agricultural systems. In this study, we explored applications of some common qualitative and quantitative methods for GPR analysis and characterization of subsurface conditions in a silvopasture system. We analyzed GPR results using traditional visual interpretation methods to delineate depth to bedrock, clay layers, and other important soil features. Estimates of depth to bedrock correlated well with values measured in the field ([Formula: see text]), and estimates of depth to clay layers were marginally correlated with observed values ([Formula: see text]). We also extracted attributes from GPR images to train a random forest regression model to predict coarse fragment percentage and percent clay content. GPR attributes were found to be good predictors of soil coarse fragments, with an R2 value of 0.81 and root mean square error (RMSE) of 18.82 for test data. Our results demonstrate GPR can provide valuable information on subsurface features in silvopastoral systems. These results also suggest a strong potential for machine learning algorithms in GPR data analytics. Data generated using these methods could be integrated with or used to validate existing digital soil mapping methods and contribute to better understanding of subsurface characteristics for optimized soil management in silvopastoral systems.
期刊介绍:
The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.