缓解震颤的全腕部外骨骼动力学与控制研究

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS Mechatronic Systems and Control Pub Date : 2019-11-26 DOI:10.1115/dscc2019-9118
Jiamin Wang, O. Barry, A. Kurdila, S. Vijayan
{"title":"缓解震颤的全腕部外骨骼动力学与控制研究","authors":"Jiamin Wang, O. Barry, A. Kurdila, S. Vijayan","doi":"10.1115/dscc2019-9118","DOIUrl":null,"url":null,"abstract":"\n This paper introduces a novel wearable full wrist exoskeleton designed for the alleviation of tremor in patients suffering from Parkinson’s Disease and Essential Tremor. The design introduces a structure to provide full observation of wrist kinematics as well as actuation in wrist flexion/extension and radial/ulnar deviation. To examine the feasibility of the design, the coupled dynamics of the device and the forearm is modeled via a general multibody framework. The dynamic analysis considers human motion, wrist stiffness, and tremor dynamics. The analysis of the model reveals that the identification of the wrist kinematics is indispensable for the controller design. Nonlinear regression based on the Levenberg-Marquardt algorithm has been applied to estimate the unknown parameters in a kinematic structural function designed to approximate the wrist kinematics, which leads to the construction of the control system framework. Finally, several simulation cases are demonstrated to conclude the study.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Dynamics and Control of a Full Wrist Exoskeleton for Tremor Alleviation\",\"authors\":\"Jiamin Wang, O. Barry, A. Kurdila, S. Vijayan\",\"doi\":\"10.1115/dscc2019-9118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper introduces a novel wearable full wrist exoskeleton designed for the alleviation of tremor in patients suffering from Parkinson’s Disease and Essential Tremor. The design introduces a structure to provide full observation of wrist kinematics as well as actuation in wrist flexion/extension and radial/ulnar deviation. To examine the feasibility of the design, the coupled dynamics of the device and the forearm is modeled via a general multibody framework. The dynamic analysis considers human motion, wrist stiffness, and tremor dynamics. The analysis of the model reveals that the identification of the wrist kinematics is indispensable for the controller design. Nonlinear regression based on the Levenberg-Marquardt algorithm has been applied to estimate the unknown parameters in a kinematic structural function designed to approximate the wrist kinematics, which leads to the construction of the control system framework. Finally, several simulation cases are demonstrated to conclude the study.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种新型的可穿戴式全腕部外骨骼,旨在减轻帕金森病和特发性震颤患者的震颤。该设计引入了一个结构,以提供腕部运动学的充分观察以及腕部屈伸和桡尺偏移的驱动。为了验证设计的可行性,通过一般的多体框架对装置和前臂的耦合动力学进行了建模。动力学分析考虑了人体运动、手腕僵硬和震颤动力学。对模型的分析表明,腕部运动特性的辨识对于控制器的设计是必不可少的。采用基于Levenberg-Marquardt算法的非线性回归方法对腕部运动结构函数的未知参数进行估计,从而构建控制系统框架。最后,通过几个仿真案例对研究进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Dynamics and Control of a Full Wrist Exoskeleton for Tremor Alleviation
This paper introduces a novel wearable full wrist exoskeleton designed for the alleviation of tremor in patients suffering from Parkinson’s Disease and Essential Tremor. The design introduces a structure to provide full observation of wrist kinematics as well as actuation in wrist flexion/extension and radial/ulnar deviation. To examine the feasibility of the design, the coupled dynamics of the device and the forearm is modeled via a general multibody framework. The dynamic analysis considers human motion, wrist stiffness, and tremor dynamics. The analysis of the model reveals that the identification of the wrist kinematics is indispensable for the controller design. Nonlinear regression based on the Levenberg-Marquardt algorithm has been applied to estimate the unknown parameters in a kinematic structural function designed to approximate the wrist kinematics, which leads to the construction of the control system framework. Finally, several simulation cases are demonstrated to conclude the study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechatronic Systems and Control
Mechatronic Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.40
自引率
66.70%
发文量
27
期刊介绍: This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.
期刊最新文献
APPLICATION OF MULTIAXIAL CNC TECHNOLOGY IN PRECISION MOLD MANUFACTURING, 1-9. TRAJECTORY TRACKING OF NONHOLONOMIC CONSTRAINT MOBILE ROBOT BASED ON ADRC INTERNET INFORMATION COLLECTION AND DATA ANALYSIS BASED ON ARTIFICIAL INTELLIGENCE, 1-9. SI DESIGN ON TRACTION BRAKING CHARACTERISTICS TEST OF TRACTION MOTOR FOR RAIL TRANSIT, 1-9. MODELLING AND SIMULATION OF FRICTION RESISTANCE OF SUPERHYDROPHOBIC SURFACE MICROSTRUCTURE, 202-209.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1