A. Muthamilarasu, S. Sivakumar, G. Divya, M. Sivakumar, D. Sakthi
{"title":"NiO/CuO/TiO2三元复合材料的制备、物理化学表征及太阳光照下活性橙30溶液的光催化降解研究","authors":"A. Muthamilarasu, S. Sivakumar, G. Divya, M. Sivakumar, D. Sakthi","doi":"10.2478/adms-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract The photocatalytic degradation and mineralization of Reactive Orange 30 on NiO/CuO/TiO2 ternary composites have been studied using solar light irradiation. The NiO/CuO/TiO2 ternary composites were prepared by producing ethanolic dispersions containing varied amounts of NiO and CuO/TiO2 (3wt% to 15wt.%), followed by annealing at 300 °C. SEM, UV- Vis DRS, PL, XRD and FTIR analysis have been used to characterize the unary (parent photocatalysts), binary and ternary composites. Under solar light irradiation, NiO/CuO/TiO2 ternary composites exhibited an excellent photocatalytic activity in degradation of reactive orange 30 in aqueous solution, whereas the NiO/TiO2, CuO/TiO2 and bare photocatalyst such as NiO, CuO, TiO2 showed lower activities. It was deduced that the remarkable visible-light absorption phenomenon and band gap reduction of the NiO/CuO/TiO2 ternary composites taking place. It paves way for the photogenerated electron transfer between CB of the NiO, CuO, TiO2 semiconductors and also holes shifting between VB of above mentioned materials. The NiO/CuO/TiO2 ternary composite shows good photostability and the photocatalyst retains 94% of its initial activity in the seventh cycle, respectively.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NiO/CuO/TiO2 Ternary Composites: Development, Physicochemical Characterization and Photocatalytic Degradation Study Over Reactive Orange 30 Solutions Under Solar Light Irradiation\",\"authors\":\"A. Muthamilarasu, S. Sivakumar, G. Divya, M. Sivakumar, D. Sakthi\",\"doi\":\"10.2478/adms-2022-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The photocatalytic degradation and mineralization of Reactive Orange 30 on NiO/CuO/TiO2 ternary composites have been studied using solar light irradiation. The NiO/CuO/TiO2 ternary composites were prepared by producing ethanolic dispersions containing varied amounts of NiO and CuO/TiO2 (3wt% to 15wt.%), followed by annealing at 300 °C. SEM, UV- Vis DRS, PL, XRD and FTIR analysis have been used to characterize the unary (parent photocatalysts), binary and ternary composites. Under solar light irradiation, NiO/CuO/TiO2 ternary composites exhibited an excellent photocatalytic activity in degradation of reactive orange 30 in aqueous solution, whereas the NiO/TiO2, CuO/TiO2 and bare photocatalyst such as NiO, CuO, TiO2 showed lower activities. It was deduced that the remarkable visible-light absorption phenomenon and band gap reduction of the NiO/CuO/TiO2 ternary composites taking place. It paves way for the photogenerated electron transfer between CB of the NiO, CuO, TiO2 semiconductors and also holes shifting between VB of above mentioned materials. The NiO/CuO/TiO2 ternary composite shows good photostability and the photocatalyst retains 94% of its initial activity in the seventh cycle, respectively.\",\"PeriodicalId\":7327,\"journal\":{\"name\":\"Advances in Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/adms-2022-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/adms-2022-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要研究了太阳光照下活性橙30在NiO/CuO/TiO2三元复合材料上的光催化降解和矿化。通过制备含有不同数量的NiO和CuO/TiO2 (3wt% ~ 15wt %)的乙醇分散体,在300℃下退火,制备了NiO/CuO/TiO2三元复合材料。利用SEM、UV- Vis DRS、PL、XRD和FTIR等分析手段对复合材料进行了表征。在太阳光照射下,NiO/CuO/TiO2三元复合材料对水中活性橙30的降解表现出优异的光催化活性,而NiO/TiO2、CuO/TiO2以及NiO、CuO、TiO2等裸光催化剂的降解活性较低。结果表明,NiO/CuO/TiO2三元复合材料出现了明显的可见光吸收现象和带隙减小。这为NiO, CuO, TiO2半导体的CB之间的光生电子转移以及上述材料的VB之间的空穴转移铺平了道路。NiO/CuO/TiO2三元复合材料表现出良好的光稳定性,光催化剂在第七次循环中分别保持了94%的初始活性。
NiO/CuO/TiO2 Ternary Composites: Development, Physicochemical Characterization and Photocatalytic Degradation Study Over Reactive Orange 30 Solutions Under Solar Light Irradiation
Abstract The photocatalytic degradation and mineralization of Reactive Orange 30 on NiO/CuO/TiO2 ternary composites have been studied using solar light irradiation. The NiO/CuO/TiO2 ternary composites were prepared by producing ethanolic dispersions containing varied amounts of NiO and CuO/TiO2 (3wt% to 15wt.%), followed by annealing at 300 °C. SEM, UV- Vis DRS, PL, XRD and FTIR analysis have been used to characterize the unary (parent photocatalysts), binary and ternary composites. Under solar light irradiation, NiO/CuO/TiO2 ternary composites exhibited an excellent photocatalytic activity in degradation of reactive orange 30 in aqueous solution, whereas the NiO/TiO2, CuO/TiO2 and bare photocatalyst such as NiO, CuO, TiO2 showed lower activities. It was deduced that the remarkable visible-light absorption phenomenon and band gap reduction of the NiO/CuO/TiO2 ternary composites taking place. It paves way for the photogenerated electron transfer between CB of the NiO, CuO, TiO2 semiconductors and also holes shifting between VB of above mentioned materials. The NiO/CuO/TiO2 ternary composite shows good photostability and the photocatalyst retains 94% of its initial activity in the seventh cycle, respectively.