Shixiong Chen, Yanbing Jin, Lisheng Xu, Guanglin Li
{"title":"对侧声刺激对扫频声诱发耳声发射的影响。","authors":"Shixiong Chen, Yanbing Jin, Lisheng Xu, Guanglin Li","doi":"10.1109/EMBC.2015.7318957","DOIUrl":null,"url":null,"abstract":"The medial olivocochlear complex (MOC) is an auditory nucleus that projects efferent nerve fibers to control the behaviors of both sides of the cochlea. Otoacoutsic emissions (OAEs) are by-products the activities of the outer hair cells (OHCs) in the cochlea and could be used as a noninvasive way to study the efferent control of the MOC. However, existing results regarding the efferent control are quite controversial and often restricted to a rather limited frequency range. In this study, a new method of measuring stimulus frequency otoacoustic emissions (SFOAEs) with the presence of a contralateral acoustic stimulation (CAS) was proposed to study the efferent control over the cochlea. SFOAEs were measured with swept tones with time varying frequencies so that SFOAE spectra with and without the presence of the CAS could be compared with high frequency-resolution. The results showed that there was consistent decrease in the amplitude of the swept-tone SFOAEs across a wide frequency range from 0.5 to 8 kHz when the CAS was presented, suggesting an outstanding attenuation of OHC activities by the efferent control from the MOC. The SFOAE decrease with the presence of the CAS might provide a new approach to measure the strength of the efferent control and to evaluate the functional status of the central auditory pathway.","PeriodicalId":72689,"journal":{"name":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","volume":"12 4","pages":"2733-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/EMBC.2015.7318957","citationCount":"0","resultStr":"{\"title\":\"Effects of contralateral acoustic stimulation on otoacoustic emissions induced by swept tones.\",\"authors\":\"Shixiong Chen, Yanbing Jin, Lisheng Xu, Guanglin Li\",\"doi\":\"10.1109/EMBC.2015.7318957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The medial olivocochlear complex (MOC) is an auditory nucleus that projects efferent nerve fibers to control the behaviors of both sides of the cochlea. Otoacoutsic emissions (OAEs) are by-products the activities of the outer hair cells (OHCs) in the cochlea and could be used as a noninvasive way to study the efferent control of the MOC. However, existing results regarding the efferent control are quite controversial and often restricted to a rather limited frequency range. In this study, a new method of measuring stimulus frequency otoacoustic emissions (SFOAEs) with the presence of a contralateral acoustic stimulation (CAS) was proposed to study the efferent control over the cochlea. SFOAEs were measured with swept tones with time varying frequencies so that SFOAE spectra with and without the presence of the CAS could be compared with high frequency-resolution. The results showed that there was consistent decrease in the amplitude of the swept-tone SFOAEs across a wide frequency range from 0.5 to 8 kHz when the CAS was presented, suggesting an outstanding attenuation of OHC activities by the efferent control from the MOC. The SFOAE decrease with the presence of the CAS might provide a new approach to measure the strength of the efferent control and to evaluate the functional status of the central auditory pathway.\",\"PeriodicalId\":72689,\"journal\":{\"name\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"volume\":\"12 4\",\"pages\":\"2733-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/EMBC.2015.7318957\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC.2015.7318957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC.2015.7318957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of contralateral acoustic stimulation on otoacoustic emissions induced by swept tones.
The medial olivocochlear complex (MOC) is an auditory nucleus that projects efferent nerve fibers to control the behaviors of both sides of the cochlea. Otoacoutsic emissions (OAEs) are by-products the activities of the outer hair cells (OHCs) in the cochlea and could be used as a noninvasive way to study the efferent control of the MOC. However, existing results regarding the efferent control are quite controversial and often restricted to a rather limited frequency range. In this study, a new method of measuring stimulus frequency otoacoustic emissions (SFOAEs) with the presence of a contralateral acoustic stimulation (CAS) was proposed to study the efferent control over the cochlea. SFOAEs were measured with swept tones with time varying frequencies so that SFOAE spectra with and without the presence of the CAS could be compared with high frequency-resolution. The results showed that there was consistent decrease in the amplitude of the swept-tone SFOAEs across a wide frequency range from 0.5 to 8 kHz when the CAS was presented, suggesting an outstanding attenuation of OHC activities by the efferent control from the MOC. The SFOAE decrease with the presence of the CAS might provide a new approach to measure the strength of the efferent control and to evaluate the functional status of the central auditory pathway.