Soo In Kim, Na Eun Kim, Sunjae Park, Joo Hee Choi, Younghun Lee, Gayeong Jeon, Jeong Eun Song, Gilson Khang
{"title":"非溶剂和热诱导相分离应用于骨组织工程的聚己内酯/脱矿骨基质支架的表征","authors":"Soo In Kim, Na Eun Kim, Sunjae Park, Joo Hee Choi, Younghun Lee, Gayeong Jeon, Jeong Eun Song, Gilson Khang","doi":"10.1007/s44164-022-00018-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Polycaprolactone (PCL) is a widely applied biomaterial in bone tissue engineering (BTE) due to its superior mechanical properties and biodegradability. However, the high hydrophobicity and low cell adhesion properties of PCL show limited cell interactions. Herein, we prepared the porous PCL/DBP composites with improved cell adhesion through the addition of demineralized bone powder (DBP). Three-dimensional scaffolds were fabricated by mixing various concentrations of DBP with PCL and applying non-solvent-induced phase separation (NIPS) and thermal-induced phase separation (TIPS) (N-TIPS) and solvent casting and particulate leaching (SCPL) to impart porosity.</p><p><strong>Methods: </strong>A characteristic evaluation was performed through X-ray diffraction (XRD), morphological analysis, physicochemical analysis, bioactivity test, and mechanical test. Upon culture with mouse bone marrow stem cells (mBMSCs), proliferation and osteogenic differentiation of mBMSC were evaluated using quantitative dsDNA analysis and alkaline phosphatase (ALP) activity, respectively.</p><p><strong>Results: </strong>The addition of DBP improved the physicochemical and mechanical properties of the scaffold and formed a large amount of hydroxyapatite (HAp). Also, cell proliferation and differentiation were increased by enhancing cell adhesion.</p><p><strong>Conclusion: </strong>The porous PCL/DBP scaffolds could provide a favorable microenvironment for cell adhesion and be a promising biomaterial model for bone tissue engineering.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"17 4","pages":"197-207"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756507/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of non-solvent- and thermal-induced phase separation applied polycaprolactone/demineralized bone matrix scaffold for bone tissue engineering.\",\"authors\":\"Soo In Kim, Na Eun Kim, Sunjae Park, Joo Hee Choi, Younghun Lee, Gayeong Jeon, Jeong Eun Song, Gilson Khang\",\"doi\":\"10.1007/s44164-022-00018-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Polycaprolactone (PCL) is a widely applied biomaterial in bone tissue engineering (BTE) due to its superior mechanical properties and biodegradability. However, the high hydrophobicity and low cell adhesion properties of PCL show limited cell interactions. Herein, we prepared the porous PCL/DBP composites with improved cell adhesion through the addition of demineralized bone powder (DBP). Three-dimensional scaffolds were fabricated by mixing various concentrations of DBP with PCL and applying non-solvent-induced phase separation (NIPS) and thermal-induced phase separation (TIPS) (N-TIPS) and solvent casting and particulate leaching (SCPL) to impart porosity.</p><p><strong>Methods: </strong>A characteristic evaluation was performed through X-ray diffraction (XRD), morphological analysis, physicochemical analysis, bioactivity test, and mechanical test. Upon culture with mouse bone marrow stem cells (mBMSCs), proliferation and osteogenic differentiation of mBMSC were evaluated using quantitative dsDNA analysis and alkaline phosphatase (ALP) activity, respectively.</p><p><strong>Results: </strong>The addition of DBP improved the physicochemical and mechanical properties of the scaffold and formed a large amount of hydroxyapatite (HAp). Also, cell proliferation and differentiation were increased by enhancing cell adhesion.</p><p><strong>Conclusion: </strong>The porous PCL/DBP scaffolds could provide a favorable microenvironment for cell adhesion and be a promising biomaterial model for bone tissue engineering.</p><p><strong>Graphical abstract: </strong></p>\",\"PeriodicalId\":73357,\"journal\":{\"name\":\"In vitro models\",\"volume\":\"17 4\",\"pages\":\"197-207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756507/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In vitro models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44164-022-00018-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-022-00018-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of non-solvent- and thermal-induced phase separation applied polycaprolactone/demineralized bone matrix scaffold for bone tissue engineering.
Objective: Polycaprolactone (PCL) is a widely applied biomaterial in bone tissue engineering (BTE) due to its superior mechanical properties and biodegradability. However, the high hydrophobicity and low cell adhesion properties of PCL show limited cell interactions. Herein, we prepared the porous PCL/DBP composites with improved cell adhesion through the addition of demineralized bone powder (DBP). Three-dimensional scaffolds were fabricated by mixing various concentrations of DBP with PCL and applying non-solvent-induced phase separation (NIPS) and thermal-induced phase separation (TIPS) (N-TIPS) and solvent casting and particulate leaching (SCPL) to impart porosity.
Methods: A characteristic evaluation was performed through X-ray diffraction (XRD), morphological analysis, physicochemical analysis, bioactivity test, and mechanical test. Upon culture with mouse bone marrow stem cells (mBMSCs), proliferation and osteogenic differentiation of mBMSC were evaluated using quantitative dsDNA analysis and alkaline phosphatase (ALP) activity, respectively.
Results: The addition of DBP improved the physicochemical and mechanical properties of the scaffold and formed a large amount of hydroxyapatite (HAp). Also, cell proliferation and differentiation were increased by enhancing cell adhesion.
Conclusion: The porous PCL/DBP scaffolds could provide a favorable microenvironment for cell adhesion and be a promising biomaterial model for bone tissue engineering.