J. Ao, Zehui Cheng, Rada Y. Chirkova, Phokion G. Kolaitis
{"title":"关系型与rdf时态数据交换与查询应答的理论与实践","authors":"J. Ao, Zehui Cheng, Rada Y. Chirkova, Phokion G. Kolaitis","doi":"10.1145/3591359","DOIUrl":null,"url":null,"abstract":"We consider the problem of answering temporal queries on RDF stores, in presence of atemporal RDFS domain ontologies, of relational data sources that include temporal information, and of rules that map the domain information in the source schemas into the target ontology. Our proposed practice-oriented solution consists of two rule-based domain-independent algorithms. The first algorithm materializes target RDF data via a version of data exchange that enriches both the data and the ontology with temporal information from the relational sources. The second algorithm accepts as inputs temporal queries expressed in terms of the domain ontology using a lightweight temporal extension of SPARQL, and ensures successful evaluation of the queries on the materialized temporally-enriched RDF data. To study the quality of the information generated by the algorithms, we develop a general framework that formalizes the relational-to-RDF temporal data-exchange problem. The framework includes a chase formalism and a formal solution for the problem of answering temporal queries in the context of relational-to-RDF temporal data exchange. In this article, we present the algorithms and the formal framework that proves correctness of the information output by the algorithms, and also report on the algorithm implementation and experimental results for two application domains.","PeriodicalId":44355,"journal":{"name":"ACM Journal of Data and Information Quality","volume":"25 1","pages":"1 - 27"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theory and Practice of Relational-to-RDF Temporal Data Exchange and Query Answering\",\"authors\":\"J. Ao, Zehui Cheng, Rada Y. Chirkova, Phokion G. Kolaitis\",\"doi\":\"10.1145/3591359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of answering temporal queries on RDF stores, in presence of atemporal RDFS domain ontologies, of relational data sources that include temporal information, and of rules that map the domain information in the source schemas into the target ontology. Our proposed practice-oriented solution consists of two rule-based domain-independent algorithms. The first algorithm materializes target RDF data via a version of data exchange that enriches both the data and the ontology with temporal information from the relational sources. The second algorithm accepts as inputs temporal queries expressed in terms of the domain ontology using a lightweight temporal extension of SPARQL, and ensures successful evaluation of the queries on the materialized temporally-enriched RDF data. To study the quality of the information generated by the algorithms, we develop a general framework that formalizes the relational-to-RDF temporal data-exchange problem. The framework includes a chase formalism and a formal solution for the problem of answering temporal queries in the context of relational-to-RDF temporal data exchange. In this article, we present the algorithms and the formal framework that proves correctness of the information output by the algorithms, and also report on the algorithm implementation and experimental results for two application domains.\",\"PeriodicalId\":44355,\"journal\":{\"name\":\"ACM Journal of Data and Information Quality\",\"volume\":\"25 1\",\"pages\":\"1 - 27\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Journal of Data and Information Quality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3591359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal of Data and Information Quality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3591359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Theory and Practice of Relational-to-RDF Temporal Data Exchange and Query Answering
We consider the problem of answering temporal queries on RDF stores, in presence of atemporal RDFS domain ontologies, of relational data sources that include temporal information, and of rules that map the domain information in the source schemas into the target ontology. Our proposed practice-oriented solution consists of two rule-based domain-independent algorithms. The first algorithm materializes target RDF data via a version of data exchange that enriches both the data and the ontology with temporal information from the relational sources. The second algorithm accepts as inputs temporal queries expressed in terms of the domain ontology using a lightweight temporal extension of SPARQL, and ensures successful evaluation of the queries on the materialized temporally-enriched RDF data. To study the quality of the information generated by the algorithms, we develop a general framework that formalizes the relational-to-RDF temporal data-exchange problem. The framework includes a chase formalism and a formal solution for the problem of answering temporal queries in the context of relational-to-RDF temporal data exchange. In this article, we present the algorithms and the formal framework that proves correctness of the information output by the algorithms, and also report on the algorithm implementation and experimental results for two application domains.