{"title":"基于多智能体深度强化学习的协同边缘缓存方法","authors":"Xiang Cao, Ningjiang Chen, Xuemei Yuan, Yifei Liu","doi":"10.1109/CSCWD57460.2023.10152789","DOIUrl":null,"url":null,"abstract":"With the support of 5G technology, mobile edge computing has made the application of industrial IoT and power IoT more and more extensive. By deploying a certain number of edge servers at the edge of the network, network service delay may significantly reduce. For the IoT scenario where the content demand is unpredictable, there are multiple distributed cloud servers and the distributed cloud servers do not communicate directly, a feasible way to improve the network service quality is to dynamically optimize the storage of edge servers and formulate targeted caching strategies. This paper proposes an edge caching approach based on multi-agent deep deterministic policy gradient named MADDPG-C, which regards distributed cloud servers and edge servers as different types of agents and maximizes the efficiency of edge caching in cooperation and competition. Simulation experiments show that the proposed MADDPG-C can further improve the hit rate of the edge cache and reduce the waiting delay of terminal devices.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"41 7","pages":"1772-1777"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cooperative Edge Caching Approach Based on Multi-Agent Deep Reinforcement Learning\",\"authors\":\"Xiang Cao, Ningjiang Chen, Xuemei Yuan, Yifei Liu\",\"doi\":\"10.1109/CSCWD57460.2023.10152789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the support of 5G technology, mobile edge computing has made the application of industrial IoT and power IoT more and more extensive. By deploying a certain number of edge servers at the edge of the network, network service delay may significantly reduce. For the IoT scenario where the content demand is unpredictable, there are multiple distributed cloud servers and the distributed cloud servers do not communicate directly, a feasible way to improve the network service quality is to dynamically optimize the storage of edge servers and formulate targeted caching strategies. This paper proposes an edge caching approach based on multi-agent deep deterministic policy gradient named MADDPG-C, which regards distributed cloud servers and edge servers as different types of agents and maximizes the efficiency of edge caching in cooperation and competition. Simulation experiments show that the proposed MADDPG-C can further improve the hit rate of the edge cache and reduce the waiting delay of terminal devices.\",\"PeriodicalId\":51008,\"journal\":{\"name\":\"Computer Supported Cooperative Work-The Journal of Collaborative Computing\",\"volume\":\"41 7\",\"pages\":\"1772-1777\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Supported Cooperative Work-The Journal of Collaborative Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCWD57460.2023.10152789\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152789","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Cooperative Edge Caching Approach Based on Multi-Agent Deep Reinforcement Learning
With the support of 5G technology, mobile edge computing has made the application of industrial IoT and power IoT more and more extensive. By deploying a certain number of edge servers at the edge of the network, network service delay may significantly reduce. For the IoT scenario where the content demand is unpredictable, there are multiple distributed cloud servers and the distributed cloud servers do not communicate directly, a feasible way to improve the network service quality is to dynamically optimize the storage of edge servers and formulate targeted caching strategies. This paper proposes an edge caching approach based on multi-agent deep deterministic policy gradient named MADDPG-C, which regards distributed cloud servers and edge servers as different types of agents and maximizes the efficiency of edge caching in cooperation and competition. Simulation experiments show that the proposed MADDPG-C can further improve the hit rate of the edge cache and reduce the waiting delay of terminal devices.
期刊介绍:
Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW.
The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas.
The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.