{"title":"提高近零能耗建筑热容量的PCM改性石膏麻混凝土","authors":"G. Bumanis, D. Bajare","doi":"10.2478/rtuect-2022-0040","DOIUrl":null,"url":null,"abstract":"Abstract Low energy building materials based on natural and renewable resources have become popular among customers. The natural occurrence of the raw materials and the idea to move closer to nature with its natural products have brought high interest in hempcrete. Hempcrete is a kind of binder-aggregate material where besides mineral binder, hemp shive aggregate act as a filler. A good technical performance of such composites has been reported before, while the term an ‘advanced material’ for traditional hempcrete lacks some superior properties for civil engineers. This research offers advanced hempcrete-type material where gypsum binder and hemp shives are used as the main components. Additionally, phase change material (PCM) was incorporated into the mixture composition to increase their thermal mass. PCM gives additional thermal heat storage for buildings which makes the building envelope more homogenous regarding thermal stability under outer temperature fluctuations. This could give additional comfort during heating and cooling seasons. Up to 20 wt.% of microencapsulated PCM suspension had been added to the hempcrete mixture composition and heat capacity was calculated and validated with differential scanning calorimetry measurements. Physical and mechanical performance was also evaluated. Results indicate that in the temperature interval from 20 to 30 °C, the heat capacity of hempcrete can be increased to 1901 J/(gK) (by 70.4 %) and it correlates well with theoretical thermal mass calculation. This gives promising results for further development of the material and proves the feasibility of PCM integration in hempcrete.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"PCM Modified Gypsum Hempcrete with Increased Heat Capacity for Nearly Zero Energy Buildings\",\"authors\":\"G. Bumanis, D. Bajare\",\"doi\":\"10.2478/rtuect-2022-0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Low energy building materials based on natural and renewable resources have become popular among customers. The natural occurrence of the raw materials and the idea to move closer to nature with its natural products have brought high interest in hempcrete. Hempcrete is a kind of binder-aggregate material where besides mineral binder, hemp shive aggregate act as a filler. A good technical performance of such composites has been reported before, while the term an ‘advanced material’ for traditional hempcrete lacks some superior properties for civil engineers. This research offers advanced hempcrete-type material where gypsum binder and hemp shives are used as the main components. Additionally, phase change material (PCM) was incorporated into the mixture composition to increase their thermal mass. PCM gives additional thermal heat storage for buildings which makes the building envelope more homogenous regarding thermal stability under outer temperature fluctuations. This could give additional comfort during heating and cooling seasons. Up to 20 wt.% of microencapsulated PCM suspension had been added to the hempcrete mixture composition and heat capacity was calculated and validated with differential scanning calorimetry measurements. Physical and mechanical performance was also evaluated. Results indicate that in the temperature interval from 20 to 30 °C, the heat capacity of hempcrete can be increased to 1901 J/(gK) (by 70.4 %) and it correlates well with theoretical thermal mass calculation. This gives promising results for further development of the material and proves the feasibility of PCM integration in hempcrete.\",\"PeriodicalId\":46053,\"journal\":{\"name\":\"Environmental and Climate Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Climate Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rtuect-2022-0040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2022-0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
PCM Modified Gypsum Hempcrete with Increased Heat Capacity for Nearly Zero Energy Buildings
Abstract Low energy building materials based on natural and renewable resources have become popular among customers. The natural occurrence of the raw materials and the idea to move closer to nature with its natural products have brought high interest in hempcrete. Hempcrete is a kind of binder-aggregate material where besides mineral binder, hemp shive aggregate act as a filler. A good technical performance of such composites has been reported before, while the term an ‘advanced material’ for traditional hempcrete lacks some superior properties for civil engineers. This research offers advanced hempcrete-type material where gypsum binder and hemp shives are used as the main components. Additionally, phase change material (PCM) was incorporated into the mixture composition to increase their thermal mass. PCM gives additional thermal heat storage for buildings which makes the building envelope more homogenous regarding thermal stability under outer temperature fluctuations. This could give additional comfort during heating and cooling seasons. Up to 20 wt.% of microencapsulated PCM suspension had been added to the hempcrete mixture composition and heat capacity was calculated and validated with differential scanning calorimetry measurements. Physical and mechanical performance was also evaluated. Results indicate that in the temperature interval from 20 to 30 °C, the heat capacity of hempcrete can be increased to 1901 J/(gK) (by 70.4 %) and it correlates well with theoretical thermal mass calculation. This gives promising results for further development of the material and proves the feasibility of PCM integration in hempcrete.
期刊介绍:
Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.