磁弦物质在彩虹引力下坍缩

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Canadian Journal of Physics Pub Date : 2023-08-11 DOI:10.1139/cjp-2023-0061
Ukasha Tasleem, Umber Sheikh
{"title":"磁弦物质在彩虹引力下坍缩","authors":"Ukasha Tasleem, Umber Sheikh","doi":"10.1139/cjp-2023-0061","DOIUrl":null,"url":null,"abstract":"This work investigates the dynamics of a collapsing magnetic string dust and string fluid in the Plank Era via spherically symmetric rainbow geometry. The field equations are modified and solved to obtain the dynamical quantities including mass density, pressure, string tension, and magnetic field strength. These quantities are presented graphically. The energy conditions are computed showing that all the dynamical quantities are associated with physical matter. The distance and moment of apparent horizon formation are computed. The magnetic field is found to affect the distance and moment of the apparent horizon's formation. It accelerates the collapsing process. Further, the dynamical variables are maximum in the collapsing configuration's center leading to compact object (black hole) formation. The probing particle's energy affects all the dynamical variables of the fluid in a direct proportion. This resolves the information paradox as a particle with greater energy grasps the information from a particle with lesser energy and takes it out in the real world.","PeriodicalId":9413,"journal":{"name":"Canadian Journal of Physics","volume":"47 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic String Matter Collapse in Rainbow Gravity\",\"authors\":\"Ukasha Tasleem, Umber Sheikh\",\"doi\":\"10.1139/cjp-2023-0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates the dynamics of a collapsing magnetic string dust and string fluid in the Plank Era via spherically symmetric rainbow geometry. The field equations are modified and solved to obtain the dynamical quantities including mass density, pressure, string tension, and magnetic field strength. These quantities are presented graphically. The energy conditions are computed showing that all the dynamical quantities are associated with physical matter. The distance and moment of apparent horizon formation are computed. The magnetic field is found to affect the distance and moment of the apparent horizon's formation. It accelerates the collapsing process. Further, the dynamical variables are maximum in the collapsing configuration's center leading to compact object (black hole) formation. The probing particle's energy affects all the dynamical variables of the fluid in a direct proportion. This resolves the information paradox as a particle with greater energy grasps the information from a particle with lesser energy and takes it out in the real world.\",\"PeriodicalId\":9413,\"journal\":{\"name\":\"Canadian Journal of Physics\",\"volume\":\"47 3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1139/cjp-2023-0061\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1139/cjp-2023-0061","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用球对称彩虹几何理论研究了普朗克时代磁线尘埃和磁线流体的坍缩动力学。对磁场方程进行修正和求解,得到质量密度、压力、弦张力和磁场强度等动态量。这些数量用图形表示。对能量条件的计算表明,所有的动力学量都与物理物质有关。计算了视界形成的距离和瞬间。发现磁场影响视界形成的距离和时刻。它加速了坍缩过程。此外,在坍缩结构的中心,导致致密物体(黑洞)形成的动力变量是最大的。探测粒子的能量与流体的所有动力学变量成正比。这就解决了一个能量较大的粒子从一个能量较小的粒子那里获取信息并将其带出现实世界的信息悖论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic String Matter Collapse in Rainbow Gravity
This work investigates the dynamics of a collapsing magnetic string dust and string fluid in the Plank Era via spherically symmetric rainbow geometry. The field equations are modified and solved to obtain the dynamical quantities including mass density, pressure, string tension, and magnetic field strength. These quantities are presented graphically. The energy conditions are computed showing that all the dynamical quantities are associated with physical matter. The distance and moment of apparent horizon formation are computed. The magnetic field is found to affect the distance and moment of the apparent horizon's formation. It accelerates the collapsing process. Further, the dynamical variables are maximum in the collapsing configuration's center leading to compact object (black hole) formation. The probing particle's energy affects all the dynamical variables of the fluid in a direct proportion. This resolves the information paradox as a particle with greater energy grasps the information from a particle with lesser energy and takes it out in the real world.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Journal of Physics
Canadian Journal of Physics 物理-物理:综合
CiteScore
2.30
自引率
8.30%
发文量
65
审稿时长
1.7 months
期刊介绍: The Canadian Journal of Physics publishes research articles, rapid communications, and review articles that report significant advances in research in physics, including atomic and molecular physics; condensed matter; elementary particles and fields; nuclear physics; gases, fluid dynamics, and plasmas; electromagnetism and optics; mathematical physics; interdisciplinary, classical, and applied physics; relativity and cosmology; physics education research; statistical mechanics and thermodynamics; quantum physics and quantum computing; gravitation and string theory; biophysics; aeronomy and space physics; and astrophysics.
期刊最新文献
Potential energy surface and quantum dynamics calculation of SH2-(2A′) based on ab initio scaled external correlation correction Vortices in multilayer stacks of Bose–Einstein condensates with tilted dipoles f(G,T) and its Cosmological Implications Détermination des propriétés thermodynamiques d’un plasma d’air contaminé par de la vapeur d’alliage AgSnO2 Bianchi type-III THDE quintessence model with hybrid scale factor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1