Marcelo G. Armentano, E. Bagheri, Julia Kiseleva, Frank W. Takes
{"title":"关于从在线用户生成内容中挖掘可操作见解的特刊前言","authors":"Marcelo G. Armentano, E. Bagheri, Julia Kiseleva, Frank W. Takes","doi":"10.1007/s10791-020-09380-2","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":54352,"journal":{"name":"Information Retrieval Journal","volume":"49 19","pages":"473 - 474"},"PeriodicalIF":1.7000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10791-020-09380-2","citationCount":"0","resultStr":"{\"title\":\"Foreword to the special issue on mining actionable insights from online user generated content\",\"authors\":\"Marcelo G. Armentano, E. Bagheri, Julia Kiseleva, Frank W. Takes\",\"doi\":\"10.1007/s10791-020-09380-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":54352,\"journal\":{\"name\":\"Information Retrieval Journal\",\"volume\":\"49 19\",\"pages\":\"473 - 474\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10791-020-09380-2\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Retrieval Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10791-020-09380-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Retrieval Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10791-020-09380-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
期刊介绍:
The journal provides an international forum for the publication of theory, algorithms, analysis and experiments across the broad area of information retrieval. Topics of interest include search, indexing, analysis, and evaluation for applications such as the web, social and streaming media, recommender systems, and text archives. This includes research on human factors in search, bridging artificial intelligence and information retrieval, and domain-specific search applications.