{"title":"广义积分。第一部分","authors":"N. Endou","doi":"10.2478/forma-2021-0019","DOIUrl":null,"url":null,"abstract":"Summary In this article, we deal with Riemann’s improper integral [1], using the Mizar system [2], [3]. Improper integrals with finite values are discussed in [5] by Yamazaki et al., but in general, improper integrals do not assume that they are finite. Therefore, we have formalized general improper integrals that does not limit the integral value to a finite value. In addition, each theorem in [5] assumes that the domain of integrand includes a closed interval, but since the improper integral should be discusses based on the half-open interval, we also corrected it.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":"21 1","pages":"201 - 220"},"PeriodicalIF":1.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improper Integral. Part I\",\"authors\":\"N. Endou\",\"doi\":\"10.2478/forma-2021-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In this article, we deal with Riemann’s improper integral [1], using the Mizar system [2], [3]. Improper integrals with finite values are discussed in [5] by Yamazaki et al., but in general, improper integrals do not assume that they are finite. Therefore, we have formalized general improper integrals that does not limit the integral value to a finite value. In addition, each theorem in [5] assumes that the domain of integrand includes a closed interval, but since the improper integral should be discusses based on the half-open interval, we also corrected it.\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":\"21 1\",\"pages\":\"201 - 220\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2021-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2021-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Summary In this article, we deal with Riemann’s improper integral [1], using the Mizar system [2], [3]. Improper integrals with finite values are discussed in [5] by Yamazaki et al., but in general, improper integrals do not assume that they are finite. Therefore, we have formalized general improper integrals that does not limit the integral value to a finite value. In addition, each theorem in [5] assumes that the domain of integrand includes a closed interval, but since the improper integral should be discusses based on the half-open interval, we also corrected it.
期刊介绍:
Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.