{"title":"基于分数阶拉普拉斯的形状优化理论","authors":"Malick Fall, I. Faye, Alassane Sy, D. Seck","doi":"10.11648/j.acm.20211003.12","DOIUrl":null,"url":null,"abstract":"The fractional Laplacian is a nonlocal operator that appears in biology, in physic, in fluids dynamic, in financial mathematics and probability. This paper deals with shape optimization problem associated to the fractional laplacian ∆s, 0 under constraints volume. Finally, shape derivative of the functional is established by using Hadamard formula’s and an optimality condition is also given.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Shape Optimization Theory with Fractional Laplacian\",\"authors\":\"Malick Fall, I. Faye, Alassane Sy, D. Seck\",\"doi\":\"10.11648/j.acm.20211003.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fractional Laplacian is a nonlocal operator that appears in biology, in physic, in fluids dynamic, in financial mathematics and probability. This paper deals with shape optimization problem associated to the fractional laplacian ∆s, 0 under constraints volume. Finally, shape derivative of the functional is established by using Hadamard formula’s and an optimality condition is also given.\",\"PeriodicalId\":55503,\"journal\":{\"name\":\"Applied and Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11648/j.acm.20211003.12\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11648/j.acm.20211003.12","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On Shape Optimization Theory with Fractional Laplacian
The fractional Laplacian is a nonlocal operator that appears in biology, in physic, in fluids dynamic, in financial mathematics and probability. This paper deals with shape optimization problem associated to the fractional laplacian ∆s, 0 under constraints volume. Finally, shape derivative of the functional is established by using Hadamard formula’s and an optimality condition is also given.
期刊介绍:
Applied and Computational Mathematics (ISSN Online: 2328-5613, ISSN Print: 2328-5605) is a prestigious journal that focuses on the field of applied and computational mathematics. It is driven by the computational revolution and places a strong emphasis on innovative applied mathematics with potential for real-world applicability and practicality.
The journal caters to a broad audience of applied mathematicians and scientists who are interested in the advancement of mathematical principles and practical aspects of computational mathematics. Researchers from various disciplines can benefit from the diverse range of topics covered in ACM. To ensure the publication of high-quality content, all research articles undergo a rigorous peer review process. This process includes an initial screening by the editors and anonymous evaluation by expert reviewers. This guarantees that only the most valuable and accurate research is published in ACM.