S. Babu, Asheel Kumar, Ram Jeet, Arvind Kumar, Dr. Ashish Varma
{"title":"等离子体通道中x模激光的受激拉曼散射","authors":"S. Babu, Asheel Kumar, Ram Jeet, Arvind Kumar, Dr. Ashish Varma","doi":"10.1155/2021/9919467","DOIUrl":null,"url":null,"abstract":"Stimulated Raman forward scattering (SRFS) of an intense X-mode laser pump in a preformed parabolic plasma density profile is investigated. The laser pump excites a plasma wave and one/two electromagnetic sideband waves. In Raman forward scattering, the growth rate of the parametric instability scales as two-third powers of the pump amplitude and increases linearly with cyclotron frequency.","PeriodicalId":49925,"journal":{"name":"Laser and Particle Beams","volume":"37 1","pages":"1-10"},"PeriodicalIF":1.1000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stimulated Raman Scattering of X-Mode Laser in a Plasma Channel\",\"authors\":\"S. Babu, Asheel Kumar, Ram Jeet, Arvind Kumar, Dr. Ashish Varma\",\"doi\":\"10.1155/2021/9919467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stimulated Raman forward scattering (SRFS) of an intense X-mode laser pump in a preformed parabolic plasma density profile is investigated. The laser pump excites a plasma wave and one/two electromagnetic sideband waves. In Raman forward scattering, the growth rate of the parametric instability scales as two-third powers of the pump amplitude and increases linearly with cyclotron frequency.\",\"PeriodicalId\":49925,\"journal\":{\"name\":\"Laser and Particle Beams\",\"volume\":\"37 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser and Particle Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/9919467\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser and Particle Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/9919467","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Stimulated Raman Scattering of X-Mode Laser in a Plasma Channel
Stimulated Raman forward scattering (SRFS) of an intense X-mode laser pump in a preformed parabolic plasma density profile is investigated. The laser pump excites a plasma wave and one/two electromagnetic sideband waves. In Raman forward scattering, the growth rate of the parametric instability scales as two-third powers of the pump amplitude and increases linearly with cyclotron frequency.
期刊介绍:
Laser and Particle Beams is an international journal which deals with basic physics issues of intense laser and particle beams, and the interaction of these beams with matter. Research on pulse power technology associated with beam generation is also of strong interest. Subjects covered include the physics of high energy densities; non-LTE phenomena; hot dense matter and related atomic, plasma and hydrodynamic physics and astrophysics; intense sources of coherent radiation; high current particle accelerators; beam-wave interaction; and pulsed power technology.