S. R, A. Kanavalli, Anshul Gupta, Ashutosh Pattanaik, Sashank Agarwal
{"title":"软件定义网络中使用机器学习技术的实时DDoS检测和缓解","authors":"S. R, A. Kanavalli, Anshul Gupta, Ashutosh Pattanaik, Sashank Agarwal","doi":"10.47839/ijc.21.3.2691","DOIUrl":null,"url":null,"abstract":"Software Defined Network (SDN) is the new era of networking technology based on a centralized controller that separates the switch hardware from its operating software. The most important challenge is the security of SDN and the most prominent attack is the Distributed Denial of Service (DDoS) attack. Some of the research work done so far detects DDoS attacks using a threshold, which is usually assumed without proper scientific reason and hence may not be always accurate. The mitigation techniques used by some researchers block the host from sending the network traffic beyond a threshold, by installing drop rules in the flow table of the switch connected to that host. Doing so will not only block the attack traffic but also the genuine ones from other applications of that host. In this paper, we propose a model that calculates the threshold limit for the type of applications sending data to a particular switch, in real-time using a machine learning (ML) model, and determines whether that application traffic is DDoS traffic. After the detection, only application type sending DDoS traffic is blocked while other genuine applications are allowed to send the network traffic without any interruption. The use of a dynamic threshold, based on the current network traffic, will help in detecting DDoS efficiently.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"142 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Real-time DDoS Detection and Mitigation in Software Defined Networks using Machine Learning Techniques\",\"authors\":\"S. R, A. Kanavalli, Anshul Gupta, Ashutosh Pattanaik, Sashank Agarwal\",\"doi\":\"10.47839/ijc.21.3.2691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software Defined Network (SDN) is the new era of networking technology based on a centralized controller that separates the switch hardware from its operating software. The most important challenge is the security of SDN and the most prominent attack is the Distributed Denial of Service (DDoS) attack. Some of the research work done so far detects DDoS attacks using a threshold, which is usually assumed without proper scientific reason and hence may not be always accurate. The mitigation techniques used by some researchers block the host from sending the network traffic beyond a threshold, by installing drop rules in the flow table of the switch connected to that host. Doing so will not only block the attack traffic but also the genuine ones from other applications of that host. In this paper, we propose a model that calculates the threshold limit for the type of applications sending data to a particular switch, in real-time using a machine learning (ML) model, and determines whether that application traffic is DDoS traffic. After the detection, only application type sending DDoS traffic is blocked while other genuine applications are allowed to send the network traffic without any interruption. The use of a dynamic threshold, based on the current network traffic, will help in detecting DDoS efficiently.\",\"PeriodicalId\":37669,\"journal\":{\"name\":\"International Journal of Computing\",\"volume\":\"142 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47839/ijc.21.3.2691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.21.3.2691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Real-time DDoS Detection and Mitigation in Software Defined Networks using Machine Learning Techniques
Software Defined Network (SDN) is the new era of networking technology based on a centralized controller that separates the switch hardware from its operating software. The most important challenge is the security of SDN and the most prominent attack is the Distributed Denial of Service (DDoS) attack. Some of the research work done so far detects DDoS attacks using a threshold, which is usually assumed without proper scientific reason and hence may not be always accurate. The mitigation techniques used by some researchers block the host from sending the network traffic beyond a threshold, by installing drop rules in the flow table of the switch connected to that host. Doing so will not only block the attack traffic but also the genuine ones from other applications of that host. In this paper, we propose a model that calculates the threshold limit for the type of applications sending data to a particular switch, in real-time using a machine learning (ML) model, and determines whether that application traffic is DDoS traffic. After the detection, only application type sending DDoS traffic is blocked while other genuine applications are allowed to send the network traffic without any interruption. The use of a dynamic threshold, based on the current network traffic, will help in detecting DDoS efficiently.
期刊介绍:
The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.