低空无人机交通管理空域设计与操作

IF 0.1 4区 工程技术 Q4 ENGINEERING, AEROSPACE Aerospace America Pub Date : 2023-08-22 DOI:10.3390/aerospace10090737
Ui-Jeong Lee, S. Ahn, Dong-Young Choi, Sang-Min Chin, Dae-Sung Jang
{"title":"低空无人机交通管理空域设计与操作","authors":"Ui-Jeong Lee, S. Ahn, Dong-Young Choi, Sang-Min Chin, Dae-Sung Jang","doi":"10.3390/aerospace10090737","DOIUrl":null,"url":null,"abstract":"As the usability of and demand for unmanned aerial vehicles (UAVs) have increased, it has become necessary to establish a UAS traffic management (UTM) system for efficient UAV operations at low altitudes. To avoid collisions with ground obstacles, other UAVs, and manned aircraft, in building a safe path, the UTM needs to determine the time and space allocated to each flight. Ideas for discretizing and structuring airspace in various forms have been proposed to enhance the efficiency of system operation and improve traffic congestion through effectual airspace allocation. Additionally, various methods of allocating UAVs to structured unit spaces have been studied in the literature. In this paper, the methods and structural designs for allocating airspace that have appeared in related studies are classified into several types, and their strengths and weaknesses are analyzed. The structured airspace designs are categorized into three models: Air-Matrix, Air-Network, and Air-Tube, and analyzed according to their sub-structures and temporal allocation methods. In addition, a quantitative analysis is conducted by re-categorizing the structured airspace and operation methods and building their combinations.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"9 3","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Airspace Designs and Operations for UAS Traffic Management at Low Altitude\",\"authors\":\"Ui-Jeong Lee, S. Ahn, Dong-Young Choi, Sang-Min Chin, Dae-Sung Jang\",\"doi\":\"10.3390/aerospace10090737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the usability of and demand for unmanned aerial vehicles (UAVs) have increased, it has become necessary to establish a UAS traffic management (UTM) system for efficient UAV operations at low altitudes. To avoid collisions with ground obstacles, other UAVs, and manned aircraft, in building a safe path, the UTM needs to determine the time and space allocated to each flight. Ideas for discretizing and structuring airspace in various forms have been proposed to enhance the efficiency of system operation and improve traffic congestion through effectual airspace allocation. Additionally, various methods of allocating UAVs to structured unit spaces have been studied in the literature. In this paper, the methods and structural designs for allocating airspace that have appeared in related studies are classified into several types, and their strengths and weaknesses are analyzed. The structured airspace designs are categorized into three models: Air-Matrix, Air-Network, and Air-Tube, and analyzed according to their sub-structures and temporal allocation methods. In addition, a quantitative analysis is conducted by re-categorizing the structured airspace and operation methods and building their combinations.\",\"PeriodicalId\":50845,\"journal\":{\"name\":\"Aerospace America\",\"volume\":\"9 3\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace America\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10090737\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10090737","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

随着无人机(UAV)的可用性和需求的增加,建立无人机交通管理(UTM)系统以实现无人机在低空的有效操作已成为必要。为了避免与地面障碍物、其他无人机和有人驾驶飞机发生碰撞,在建立安全路径时,UTM需要确定分配给每次飞行的时间和空间。提出了以各种形式离散化和结构化空域的思路,以提高系统运行效率,并通过有效的空域分配来改善交通拥堵。此外,文献中还研究了将无人机分配到结构化单元空间的各种方法。本文对相关研究中出现的空域分配方法和结构设计进行了分类,并对其优缺点进行了分析。将结构化空域设计分为Air-Matrix、Air-Network和Air-Tube三种模型,并根据其子结构和时间分配方法进行了分析。此外,通过对结构化空域和操作方法进行重新分类并构建其组合进行定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Airspace Designs and Operations for UAS Traffic Management at Low Altitude
As the usability of and demand for unmanned aerial vehicles (UAVs) have increased, it has become necessary to establish a UAS traffic management (UTM) system for efficient UAV operations at low altitudes. To avoid collisions with ground obstacles, other UAVs, and manned aircraft, in building a safe path, the UTM needs to determine the time and space allocated to each flight. Ideas for discretizing and structuring airspace in various forms have been proposed to enhance the efficiency of system operation and improve traffic congestion through effectual airspace allocation. Additionally, various methods of allocating UAVs to structured unit spaces have been studied in the literature. In this paper, the methods and structural designs for allocating airspace that have appeared in related studies are classified into several types, and their strengths and weaknesses are analyzed. The structured airspace designs are categorized into three models: Air-Matrix, Air-Network, and Air-Tube, and analyzed according to their sub-structures and temporal allocation methods. In addition, a quantitative analysis is conducted by re-categorizing the structured airspace and operation methods and building their combinations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace America
Aerospace America 工程技术-工程:宇航
自引率
0.00%
发文量
9
审稿时长
4-8 weeks
期刊最新文献
A Novel Digital Twin Framework for Aeroengine Performance Diagnosis GPU Acceleration of CFD Simulations in OpenFOAM Recent Advances in Airfoil Self-Noise Passive Reduction Characteristics of Vortices around Forward Swept Wing at Low Speeds/High Angles of Attack A Digital-Twin-Based Detection and Protection Framework for SDC-Induced Sinkhole and Grayhole Nodes in Satellite Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1