重复经颅磁刺激在帕金森病运动症状中的应用

Y. Saitoh, T. Mano, M. Yokoe
{"title":"重复经颅磁刺激在帕金森病运动症状中的应用","authors":"Y. Saitoh, T. Mano, M. Yokoe","doi":"10.4172/2161-0460.1000424","DOIUrl":null,"url":null,"abstract":"various cortical targets, including the primary motor cortex (M1), supplementary motor area (SMA), and left dorsolateral prefrontal cortex (DLPFC), has been reported. After application of high-frequency (HF)rTMS over the M1, most studies have demonstrated that PD patient’s exhibit improved motor function in their hands and gait [10-12]. The HF-rTMS over the M1 suggested being increased motor-related activity in the caudate nucleus. Even so, other studies have reported no beneficial effects of this stimulation [13]. In one study, an rTMS of 5 Hz over the SMA modestly improved motor symptoms in patients with PD [14]. Another study, which aimed to improve disturbance in mood in PD patients by applying rTMS over the DLPFC, demonstrated positive effects on depression level [15]. Moreover, a few other studies have reported positive effects and improvement in motor symptoms in PD patients who received rTMS over the DLPFC [16]. Therefore, optimal parameters for rTMS remain to be established. To address this issue, we sought to identify the best cortical area for HF-rTMS therapy in patients with PD by conducting a double-blind, placebo-controlled, crossover study. After application of HF-rTMS over the M1, SMA, DLPFC and sham, we compared the results to those obtained during sham stimulations [17]. This study reported that the UPDRS-III scores following the application of HF-rTMS over the M1 and SMA was significantly greater than that following sham stimulation. In contrast, changes in UPDRSIII scores following bilateral rTMS over the DLPFC were not different from those after sham stimulation. No significant changes emerged for either the depression or apathy scores following HF-rTMS over any cortical area. Therefore, application of HF-rTMS over the M1 and SMA significantly improved the motor symptoms in patients with PD but did not improve mood disturbances. Many positive studies report improvement of bradykinesia, but diverge in their efficacy to treat other cardinal symptoms of PD. rTMS improved gait in several [18,19], but not all studies [20]. A few studies have reported finding improvement in tremor symptoms in PD patients who received rTMS. At present, the mechanisms of rTMS in relation to disturbances in motor function and mood in PD remain unclear and thus controversial. A hypoactive caudate nucleus may underlie the motor deficits in PD patients by interfering with the normal functioning of the striato-frontal motor loop. Applying HF-rTMS over the M1 may partially compensate for the underactive basal ganglia-thalamocortical outflow to the frontal motor cortical areas","PeriodicalId":15012,"journal":{"name":"Journal of Alzheimers Disease & Parkinsonism","volume":"42 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of Repetitive Transcranial Magnetic Stimulation on Motor Symptoms in Parkinson's Disease\",\"authors\":\"Y. Saitoh, T. Mano, M. Yokoe\",\"doi\":\"10.4172/2161-0460.1000424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"various cortical targets, including the primary motor cortex (M1), supplementary motor area (SMA), and left dorsolateral prefrontal cortex (DLPFC), has been reported. After application of high-frequency (HF)rTMS over the M1, most studies have demonstrated that PD patient’s exhibit improved motor function in their hands and gait [10-12]. The HF-rTMS over the M1 suggested being increased motor-related activity in the caudate nucleus. Even so, other studies have reported no beneficial effects of this stimulation [13]. In one study, an rTMS of 5 Hz over the SMA modestly improved motor symptoms in patients with PD [14]. Another study, which aimed to improve disturbance in mood in PD patients by applying rTMS over the DLPFC, demonstrated positive effects on depression level [15]. Moreover, a few other studies have reported positive effects and improvement in motor symptoms in PD patients who received rTMS over the DLPFC [16]. Therefore, optimal parameters for rTMS remain to be established. To address this issue, we sought to identify the best cortical area for HF-rTMS therapy in patients with PD by conducting a double-blind, placebo-controlled, crossover study. After application of HF-rTMS over the M1, SMA, DLPFC and sham, we compared the results to those obtained during sham stimulations [17]. This study reported that the UPDRS-III scores following the application of HF-rTMS over the M1 and SMA was significantly greater than that following sham stimulation. In contrast, changes in UPDRSIII scores following bilateral rTMS over the DLPFC were not different from those after sham stimulation. No significant changes emerged for either the depression or apathy scores following HF-rTMS over any cortical area. Therefore, application of HF-rTMS over the M1 and SMA significantly improved the motor symptoms in patients with PD but did not improve mood disturbances. Many positive studies report improvement of bradykinesia, but diverge in their efficacy to treat other cardinal symptoms of PD. rTMS improved gait in several [18,19], but not all studies [20]. A few studies have reported finding improvement in tremor symptoms in PD patients who received rTMS. At present, the mechanisms of rTMS in relation to disturbances in motor function and mood in PD remain unclear and thus controversial. A hypoactive caudate nucleus may underlie the motor deficits in PD patients by interfering with the normal functioning of the striato-frontal motor loop. Applying HF-rTMS over the M1 may partially compensate for the underactive basal ganglia-thalamocortical outflow to the frontal motor cortical areas\",\"PeriodicalId\":15012,\"journal\":{\"name\":\"Journal of Alzheimers Disease & Parkinsonism\",\"volume\":\"42 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alzheimers Disease & Parkinsonism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2161-0460.1000424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimers Disease & Parkinsonism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-0460.1000424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

各种皮层靶点,包括初级运动皮层(M1)、辅助运动区(SMA)和左背外侧前额叶皮层(DLPFC),已被报道。在M1上应用高频rTMS后,大多数研究表明PD患者的手部和步态运动功能得到改善[10-12]。M1上的高频rtms提示尾状核的运动相关活动增加。即便如此,其他研究也没有报道这种刺激的有益效果[13]。在一项研究中,超过SMA的5hz rTMS可适度改善PD患者的运动症状[14]。另一项旨在通过在DLPFC上应用rTMS改善PD患者情绪障碍的研究显示对抑郁水平有积极作用[15]。此外,其他一些研究也报道了PD患者接受rTMS而不是DLPFC的运动症状的积极作用和改善[16]。因此,rTMS的最佳参数还有待确定。为了解决这个问题,我们通过一项双盲、安慰剂对照、交叉研究,试图确定PD患者HF-rTMS治疗的最佳皮质区域。将高频rtms应用于M1、SMA、DLPFC和假手术后,我们将结果与假手术刺激时获得的结果进行了比较[17]。本研究报道,应用HF-rTMS后,M1和SMA的UPDRS-III评分显著高于假刺激后的评分。相比之下,双侧rTMS后UPDRSIII评分在DLPFC上的变化与假刺激后的变化没有差异。HF-rTMS对任何皮质区域的抑郁或冷漠评分均无显著变化。因此,在M1和SMA上应用HF-rTMS可显著改善PD患者的运动症状,但不能改善情绪障碍。许多积极的研究报告了运动迟缓的改善,但在治疗PD的其他主要症状的疗效上存在分歧。rTMS在一些研究中改善了步态[18,19],但不是所有的研究[20]。一些研究报告发现接受rTMS治疗的PD患者的震颤症状有所改善。目前,rTMS与PD患者运动功能和情绪障碍的关系机制尚不清楚,因此存在争议。低活性尾状核可能通过干扰纹状-额叶运动回路的正常功能而成为PD患者运动缺陷的基础。在M1上应用HF-rTMS可以部分补偿基底神经节-丘脑皮质额叶运动皮质区流出活动不足
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applications of Repetitive Transcranial Magnetic Stimulation on Motor Symptoms in Parkinson's Disease
various cortical targets, including the primary motor cortex (M1), supplementary motor area (SMA), and left dorsolateral prefrontal cortex (DLPFC), has been reported. After application of high-frequency (HF)rTMS over the M1, most studies have demonstrated that PD patient’s exhibit improved motor function in their hands and gait [10-12]. The HF-rTMS over the M1 suggested being increased motor-related activity in the caudate nucleus. Even so, other studies have reported no beneficial effects of this stimulation [13]. In one study, an rTMS of 5 Hz over the SMA modestly improved motor symptoms in patients with PD [14]. Another study, which aimed to improve disturbance in mood in PD patients by applying rTMS over the DLPFC, demonstrated positive effects on depression level [15]. Moreover, a few other studies have reported positive effects and improvement in motor symptoms in PD patients who received rTMS over the DLPFC [16]. Therefore, optimal parameters for rTMS remain to be established. To address this issue, we sought to identify the best cortical area for HF-rTMS therapy in patients with PD by conducting a double-blind, placebo-controlled, crossover study. After application of HF-rTMS over the M1, SMA, DLPFC and sham, we compared the results to those obtained during sham stimulations [17]. This study reported that the UPDRS-III scores following the application of HF-rTMS over the M1 and SMA was significantly greater than that following sham stimulation. In contrast, changes in UPDRSIII scores following bilateral rTMS over the DLPFC were not different from those after sham stimulation. No significant changes emerged for either the depression or apathy scores following HF-rTMS over any cortical area. Therefore, application of HF-rTMS over the M1 and SMA significantly improved the motor symptoms in patients with PD but did not improve mood disturbances. Many positive studies report improvement of bradykinesia, but diverge in their efficacy to treat other cardinal symptoms of PD. rTMS improved gait in several [18,19], but not all studies [20]. A few studies have reported finding improvement in tremor symptoms in PD patients who received rTMS. At present, the mechanisms of rTMS in relation to disturbances in motor function and mood in PD remain unclear and thus controversial. A hypoactive caudate nucleus may underlie the motor deficits in PD patients by interfering with the normal functioning of the striato-frontal motor loop. Applying HF-rTMS over the M1 may partially compensate for the underactive basal ganglia-thalamocortical outflow to the frontal motor cortical areas
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Age-Dependent Cognitive Sequelae of Advanced Carotid Disease after CarotidEndarterectomy To Investigate Role of Glycosylated Hemoglobin (Hba1c) as a Biomarker for Prediction of Dementia and Cognitive Dysfunction in Type 2 Diabetic Patients Disrupted Blood-CSF Barrier to Urea and Creatinine in Mild Cognitive Impairment and Alzheimer's Disease Correlation of Alzheimer’s Dementia Markers Apathy in Huntington’s Disease: A Review of the Current Conceptualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1