遗传算法优化支持向量机参数及其在材料疲劳寿命预测中的应用

Lanlan Zhang, Juyang Lei, Qilin Zhou, Yudong Wang
{"title":"遗传算法优化支持向量机参数及其在材料疲劳寿命预测中的应用","authors":"Lanlan Zhang, Juyang Lei, Qilin Zhou, Yudong Wang","doi":"10.3968/6404","DOIUrl":null,"url":null,"abstract":"Support vector machine is a new kind of learning method based on solid theoretical foundation, but this method has the characteristic of sensitivity to parameter. According to this characteristic, this paper use genetic algorithm to optimize the parameters of SVM and cross validation is introduced to reduce the dependence of the parameters on the training samples. Through the analysis of fatigue data for the relevant literature, take the parameters of the best generalization ability as the final parameters and apply the obtained model (GA-SVR) in material fatigue life prediction. Compared with the conventional SVR model and PSO-SVR model, the mean square error and the square of correlation coefficient are used to verify the reliability and accuracy of the three models. The results show that, the GA-SVR model can predict the fatigue life of materials with high accuracy.","PeriodicalId":7348,"journal":{"name":"Advances in Natural Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Using Genetic Algorithm to Optimize Parameters of Support Vector Machine and Its Application in Material Fatigue Life Prediction\",\"authors\":\"Lanlan Zhang, Juyang Lei, Qilin Zhou, Yudong Wang\",\"doi\":\"10.3968/6404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support vector machine is a new kind of learning method based on solid theoretical foundation, but this method has the characteristic of sensitivity to parameter. According to this characteristic, this paper use genetic algorithm to optimize the parameters of SVM and cross validation is introduced to reduce the dependence of the parameters on the training samples. Through the analysis of fatigue data for the relevant literature, take the parameters of the best generalization ability as the final parameters and apply the obtained model (GA-SVR) in material fatigue life prediction. Compared with the conventional SVR model and PSO-SVR model, the mean square error and the square of correlation coefficient are used to verify the reliability and accuracy of the three models. The results show that, the GA-SVR model can predict the fatigue life of materials with high accuracy.\",\"PeriodicalId\":7348,\"journal\":{\"name\":\"Advances in Natural Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3968/6404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3968/6404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

支持向量机是一种基于坚实理论基础的新型学习方法,但该方法具有对参数敏感的特点。针对这一特点,本文采用遗传算法对支持向量机的参数进行优化,并引入交叉验证来降低参数对训练样本的依赖性。通过对相关文献疲劳数据的分析,以最佳泛化能力的参数作为最终参数,将所得模型(GA-SVR)应用于材料疲劳寿命预测。通过与传统SVR模型和PSO-SVR模型的比较,利用均方误差和相关系数平方验证了三种模型的可靠性和准确性。结果表明,GA-SVR模型能较准确地预测材料的疲劳寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Genetic Algorithm to Optimize Parameters of Support Vector Machine and Its Application in Material Fatigue Life Prediction
Support vector machine is a new kind of learning method based on solid theoretical foundation, but this method has the characteristic of sensitivity to parameter. According to this characteristic, this paper use genetic algorithm to optimize the parameters of SVM and cross validation is introduced to reduce the dependence of the parameters on the training samples. Through the analysis of fatigue data for the relevant literature, take the parameters of the best generalization ability as the final parameters and apply the obtained model (GA-SVR) in material fatigue life prediction. Compared with the conventional SVR model and PSO-SVR model, the mean square error and the square of correlation coefficient are used to verify the reliability and accuracy of the three models. The results show that, the GA-SVR model can predict the fatigue life of materials with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proterozoic Charnockites at 1.6 & 1.0 Ga in the Eastern Ghats Belt, India, Mirror Secular Evolution of Continental Crust Application and Research of High Precision Data Acquisition for Laser Gyro Assessement of the Relationship Between Increase in Heigth of Cassava Growth Rate and Agro-Climatic Parameters in Ilorin Area of Kwara State, Nigeria Stability Analysis of Eggshells Subjected to External Pressure A Study on the Characteristics of Water Consumption by Transpiration of Four Garden Plants in Linzhi City, Tibet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1