{"title":"利用激光染料荧光最大位移检测有机化合物的技术","authors":"J. Dadge, D. Thakur","doi":"10.4172/2469-410X.1000167","DOIUrl":null,"url":null,"abstract":"A technique that could be used for sensing organic compounds is presented. In ethanol, Rhodamine-6G (a laser dye) was dissolved to obtain a Rhodamine-ethanol (Rh-Eth) solution with the concentration of Rhodamine-6G being 0.005 M. Methanol (0.25 cm3) was added to the Rh-Eth solution and the Rh-Eth-Me solution so obtained was pumped with a nitrogen laser. A blue shift in the fluorescence spectrum of the Rh-Eth-Me was observed as compared to the Rh-Eth solution without methanol. A similar blue shift was observed in the Rh-Eth solution when acetone and acetonitrile were separately added. When Rhodamine-6G and Coumarin460 were added with Polymethyl methacrylate (PMMA) in ethanol, a blue shift was observed in the fluorescence spectrum as compared to the Rh-6G and Cou460 in ethanol without PMMA. The phenomena of spectral shifts in the fluorescence spectrum can be used to sense organic compounds and a mechanism is discussed.","PeriodicalId":92245,"journal":{"name":"Journal of lasers, optics & photonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Technique for Sensing Organic Compounds Using Fluorescence Maximum Shift In Laser Dyes\",\"authors\":\"J. Dadge, D. Thakur\",\"doi\":\"10.4172/2469-410X.1000167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technique that could be used for sensing organic compounds is presented. In ethanol, Rhodamine-6G (a laser dye) was dissolved to obtain a Rhodamine-ethanol (Rh-Eth) solution with the concentration of Rhodamine-6G being 0.005 M. Methanol (0.25 cm3) was added to the Rh-Eth solution and the Rh-Eth-Me solution so obtained was pumped with a nitrogen laser. A blue shift in the fluorescence spectrum of the Rh-Eth-Me was observed as compared to the Rh-Eth solution without methanol. A similar blue shift was observed in the Rh-Eth solution when acetone and acetonitrile were separately added. When Rhodamine-6G and Coumarin460 were added with Polymethyl methacrylate (PMMA) in ethanol, a blue shift was observed in the fluorescence spectrum as compared to the Rh-6G and Cou460 in ethanol without PMMA. The phenomena of spectral shifts in the fluorescence spectrum can be used to sense organic compounds and a mechanism is discussed.\",\"PeriodicalId\":92245,\"journal\":{\"name\":\"Journal of lasers, optics & photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of lasers, optics & photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2469-410X.1000167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers, optics & photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2469-410X.1000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Technique for Sensing Organic Compounds Using Fluorescence Maximum Shift In Laser Dyes
A technique that could be used for sensing organic compounds is presented. In ethanol, Rhodamine-6G (a laser dye) was dissolved to obtain a Rhodamine-ethanol (Rh-Eth) solution with the concentration of Rhodamine-6G being 0.005 M. Methanol (0.25 cm3) was added to the Rh-Eth solution and the Rh-Eth-Me solution so obtained was pumped with a nitrogen laser. A blue shift in the fluorescence spectrum of the Rh-Eth-Me was observed as compared to the Rh-Eth solution without methanol. A similar blue shift was observed in the Rh-Eth solution when acetone and acetonitrile were separately added. When Rhodamine-6G and Coumarin460 were added with Polymethyl methacrylate (PMMA) in ethanol, a blue shift was observed in the fluorescence spectrum as compared to the Rh-6G and Cou460 in ethanol without PMMA. The phenomena of spectral shifts in the fluorescence spectrum can be used to sense organic compounds and a mechanism is discussed.