{"title":"方形晶格上自旋1/2海森堡反铁磁体的有限温度对称张量网络","authors":"D. Poilblanc, M. Mambrini, F. Alet","doi":"10.21468/SCIPOSTPHYS.10.1.019","DOIUrl":null,"url":null,"abstract":"Within the tensor network framework, the (positive) thermal density operator can be approximated by a double layer of infinite Projected Entangled Pair Operator (iPEPO) coupled via ancilla degrees of freedom. To investigate the thermal properties of the spin-1/2 Heisenberg model on the square lattice, we introduce a family of fully spin-$SU(2)$ and lattice-$C_{4v}$ symmetric on-site tensors (of bond dimensions $D=4$ or $D=7$) and a plaquette-based Trotter-Suzuki decomposition of the imaginary-time evolution operator. A variational optimization is performed on the plaquettes, using a full (for $D=4$) or simple (for $D=7$) environment obtained from the single-site Corner Transfer Matrix Renormalization Group fixed point. The method is benchmarked by a comparison to quantum Monte Carlo in the thermodynamic limit. Although the iPEPO spin correlation length starts to deviate from the exact exponential growth for inverse-temperature $\\beta \\gtrsim 2$, the behavior of various observables turns out to be quite accurate once plotted w.r.t the inverse correlation length. We also find that a direct $T=0$ variational energy optimization provides results in full agreement with the $\\beta\\rightarrow\\infty$ limit of finite-temperature data, hence validating the imaginary-time evolution procedure. Extension of the method to frustrated models is described and preliminary results are shown.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Finite-temperature symmetric tensor network for spin-1/2 Heisenberg antiferromagnets on the square lattice\",\"authors\":\"D. Poilblanc, M. Mambrini, F. Alet\",\"doi\":\"10.21468/SCIPOSTPHYS.10.1.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the tensor network framework, the (positive) thermal density operator can be approximated by a double layer of infinite Projected Entangled Pair Operator (iPEPO) coupled via ancilla degrees of freedom. To investigate the thermal properties of the spin-1/2 Heisenberg model on the square lattice, we introduce a family of fully spin-$SU(2)$ and lattice-$C_{4v}$ symmetric on-site tensors (of bond dimensions $D=4$ or $D=7$) and a plaquette-based Trotter-Suzuki decomposition of the imaginary-time evolution operator. A variational optimization is performed on the plaquettes, using a full (for $D=4$) or simple (for $D=7$) environment obtained from the single-site Corner Transfer Matrix Renormalization Group fixed point. The method is benchmarked by a comparison to quantum Monte Carlo in the thermodynamic limit. Although the iPEPO spin correlation length starts to deviate from the exact exponential growth for inverse-temperature $\\\\beta \\\\gtrsim 2$, the behavior of various observables turns out to be quite accurate once plotted w.r.t the inverse correlation length. We also find that a direct $T=0$ variational energy optimization provides results in full agreement with the $\\\\beta\\\\rightarrow\\\\infty$ limit of finite-temperature data, hence validating the imaginary-time evolution procedure. Extension of the method to frustrated models is described and preliminary results are shown.\",\"PeriodicalId\":8511,\"journal\":{\"name\":\"arXiv: Strongly Correlated Electrons\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21468/SCIPOSTPHYS.10.1.019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SCIPOSTPHYS.10.1.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite-temperature symmetric tensor network for spin-1/2 Heisenberg antiferromagnets on the square lattice
Within the tensor network framework, the (positive) thermal density operator can be approximated by a double layer of infinite Projected Entangled Pair Operator (iPEPO) coupled via ancilla degrees of freedom. To investigate the thermal properties of the spin-1/2 Heisenberg model on the square lattice, we introduce a family of fully spin-$SU(2)$ and lattice-$C_{4v}$ symmetric on-site tensors (of bond dimensions $D=4$ or $D=7$) and a plaquette-based Trotter-Suzuki decomposition of the imaginary-time evolution operator. A variational optimization is performed on the plaquettes, using a full (for $D=4$) or simple (for $D=7$) environment obtained from the single-site Corner Transfer Matrix Renormalization Group fixed point. The method is benchmarked by a comparison to quantum Monte Carlo in the thermodynamic limit. Although the iPEPO spin correlation length starts to deviate from the exact exponential growth for inverse-temperature $\beta \gtrsim 2$, the behavior of various observables turns out to be quite accurate once plotted w.r.t the inverse correlation length. We also find that a direct $T=0$ variational energy optimization provides results in full agreement with the $\beta\rightarrow\infty$ limit of finite-temperature data, hence validating the imaginary-time evolution procedure. Extension of the method to frustrated models is described and preliminary results are shown.