面向ICF激光设备的频谱定制型随机光纤激光器

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Matter and Radiation at Extremes Pub Date : 2023-03-01 DOI:10.1063/5.0129434
M. Fan, Shengtao Lin, K. Yao, Yifei Qi, Jiaojiao Zhang, Junwen Zheng, Pan Wang, Longqun Ni, X. Bao, D. Zhou, Bo Zhang, Kaibo Xiao, H. Xia, Rui Zhang, Ping Li, Wanguo Zheng, Zi-nan Wang
{"title":"面向ICF激光设备的频谱定制型随机光纤激光器","authors":"M. Fan, Shengtao Lin, K. Yao, Yifei Qi, Jiaojiao Zhang, Junwen Zheng, Pan Wang, Longqun Ni, X. Bao, D. Zhou, Bo Zhang, Kaibo Xiao, H. Xia, Rui Zhang, Ping Li, Wanguo Zheng, Zi-nan Wang","doi":"10.1063/5.0129434","DOIUrl":null,"url":null,"abstract":"Broadband low-coherence light is considered to be an effective way to suppress laser plasma instability. Recent studies have demonstrated the ability of low-coherence laser facilities to reduce back-scattering during beam–target coupling. However, to ensure simultaneous low coherence and high energy, complex spectral modulation methods and amplification routes have to be adopted. In this work, we propose the use of a random fiber laser (RFL) as the seed source. The spectral features of this RFL can be carefully tailored to provide a good match with the gain characteristics of the laser amplification medium, thus enabling efficient amplification while maintaining low coherence. First, a theoretical model is constructed to give a comprehensive description of the output characteristics of the spectrum-tailored RFL, after which the designed RFL is experimentally realized as a seed source. Through precise pulse shaping and efficient regenerative amplification, a shaped random laser pulse output of 28 mJ is obtained, which is the first random laser system with megawatt-class peak power that is able to achieve low coherence and efficient spectrum-conformal regenerative amplification.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"36 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spectrum-tailored random fiber laser towards ICF laser facility\",\"authors\":\"M. Fan, Shengtao Lin, K. Yao, Yifei Qi, Jiaojiao Zhang, Junwen Zheng, Pan Wang, Longqun Ni, X. Bao, D. Zhou, Bo Zhang, Kaibo Xiao, H. Xia, Rui Zhang, Ping Li, Wanguo Zheng, Zi-nan Wang\",\"doi\":\"10.1063/5.0129434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Broadband low-coherence light is considered to be an effective way to suppress laser plasma instability. Recent studies have demonstrated the ability of low-coherence laser facilities to reduce back-scattering during beam–target coupling. However, to ensure simultaneous low coherence and high energy, complex spectral modulation methods and amplification routes have to be adopted. In this work, we propose the use of a random fiber laser (RFL) as the seed source. The spectral features of this RFL can be carefully tailored to provide a good match with the gain characteristics of the laser amplification medium, thus enabling efficient amplification while maintaining low coherence. First, a theoretical model is constructed to give a comprehensive description of the output characteristics of the spectrum-tailored RFL, after which the designed RFL is experimentally realized as a seed source. Through precise pulse shaping and efficient regenerative amplification, a shaped random laser pulse output of 28 mJ is obtained, which is the first random laser system with megawatt-class peak power that is able to achieve low coherence and efficient spectrum-conformal regenerative amplification.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0129434\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0129434","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

宽带低相干光被认为是抑制激光等离子体不稳定性的有效途径。最近的研究表明,低相干激光设备能够减少光束-目标耦合过程中的后向散射。然而,为了保证低相干性和高能量同时存在,必须采用复杂的光谱调制方法和放大路径。在这项工作中,我们提出使用随机光纤激光器(RFL)作为种子源。该RFL的光谱特征可以精心定制,以提供与激光放大介质的增益特性良好匹配,从而在保持低相干性的同时实现高效放大。首先,建立了一个理论模型,全面描述了光谱定制RFL的输出特性,然后将设计的RFL作为种子源进行了实验实现。通过精确的脉冲整形和高效的再生放大,获得了28 mJ的定型随机激光脉冲输出,这是第一个具有兆瓦级峰值功率的随机激光系统,能够实现低相干和高效的频谱保形再生放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectrum-tailored random fiber laser towards ICF laser facility
Broadband low-coherence light is considered to be an effective way to suppress laser plasma instability. Recent studies have demonstrated the ability of low-coherence laser facilities to reduce back-scattering during beam–target coupling. However, to ensure simultaneous low coherence and high energy, complex spectral modulation methods and amplification routes have to be adopted. In this work, we propose the use of a random fiber laser (RFL) as the seed source. The spectral features of this RFL can be carefully tailored to provide a good match with the gain characteristics of the laser amplification medium, thus enabling efficient amplification while maintaining low coherence. First, a theoretical model is constructed to give a comprehensive description of the output characteristics of the spectrum-tailored RFL, after which the designed RFL is experimentally realized as a seed source. Through precise pulse shaping and efficient regenerative amplification, a shaped random laser pulse output of 28 mJ is obtained, which is the first random laser system with megawatt-class peak power that is able to achieve low coherence and efficient spectrum-conformal regenerative amplification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
期刊最新文献
Compact laser wakefield acceleration toward high energy with micro-plasma parabola Hollow ion atomic structure and X-ray emission in dense hot plasmas Exotic compounds of monovalent calcium synthesized at high pressure Experimental measurements of gamma-photon production and estimation of electron/positron production on the PETAL laser facility Benchmark simulations of radiative transfer in participating binary stochastic mixtures in two dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1