利用图书索引自动提取mooc中的概念

Assma Boughoula, Aidan San, Chengxiang Zhai
{"title":"利用图书索引自动提取mooc中的概念","authors":"Assma Boughoula, Aidan San, Chengxiang Zhai","doi":"10.1145/3386527.3406749","DOIUrl":null,"url":null,"abstract":"Concepts are basic elements in any learning module and are thus very useful for modeling, summarizing, and previewing the content of any module. Automatic extraction of the major concepts from online education materials enables many useful applications. In this paper, we propose to leverage textbooks and their back-of-the-book indexes as training data to train a supervised machine learning algorithm for automatic extraction of concepts from text data in the education domain. We evaluate this idea by training neural networks on three textbooks and applying the trained neural networks to extract concepts from the lecture transcripts of two MOOCs. Our results suggest great promise for further exploration of this direction.","PeriodicalId":20608,"journal":{"name":"Proceedings of the Seventh ACM Conference on Learning @ Scale","volume":"5 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leveraging Book Indexes for Automatic Extraction of Concepts in MOOCs\",\"authors\":\"Assma Boughoula, Aidan San, Chengxiang Zhai\",\"doi\":\"10.1145/3386527.3406749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concepts are basic elements in any learning module and are thus very useful for modeling, summarizing, and previewing the content of any module. Automatic extraction of the major concepts from online education materials enables many useful applications. In this paper, we propose to leverage textbooks and their back-of-the-book indexes as training data to train a supervised machine learning algorithm for automatic extraction of concepts from text data in the education domain. We evaluate this idea by training neural networks on three textbooks and applying the trained neural networks to extract concepts from the lecture transcripts of two MOOCs. Our results suggest great promise for further exploration of this direction.\",\"PeriodicalId\":20608,\"journal\":{\"name\":\"Proceedings of the Seventh ACM Conference on Learning @ Scale\",\"volume\":\"5 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386527.3406749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386527.3406749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

概念是任何学习模块中的基本元素,因此对于建模、总结和预览任何模块的内容都非常有用。从在线教育材料中自动提取主要概念可以实现许多有用的应用。在本文中,我们建议利用教科书及其书后索引作为训练数据来训练一种监督机器学习算法,用于从教育领域的文本数据中自动提取概念。我们通过在三本教科书上训练神经网络,并应用训练后的神经网络从两门mooc的课堂讲稿中提取概念来评估这一想法。我们的结果为进一步探索这一方向提供了很大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging Book Indexes for Automatic Extraction of Concepts in MOOCs
Concepts are basic elements in any learning module and are thus very useful for modeling, summarizing, and previewing the content of any module. Automatic extraction of the major concepts from online education materials enables many useful applications. In this paper, we propose to leverage textbooks and their back-of-the-book indexes as training data to train a supervised machine learning algorithm for automatic extraction of concepts from text data in the education domain. We evaluate this idea by training neural networks on three textbooks and applying the trained neural networks to extract concepts from the lecture transcripts of two MOOCs. Our results suggest great promise for further exploration of this direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trust, Sustainability and [email protected] L@S'22: Ninth ACM Conference on Learning @ Scale, New York City, NY, USA, June 1 - 3, 2022 L@S'21: Eighth ACM Conference on Learning @ Scale, Virtual Event, Germany, June 22-25, 2021 Leveraging Book Indexes for Automatic Extraction of Concepts in MOOCs Evaluating Bayesian Knowledge Tracing for Estimating Learner Proficiency and Guiding Learner Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1